Activated Charcoal in Medical Applications

DAVID O. COONEY

University of Wyoming
Laramie, Wyoming
CONTENTS

Foreword
Preface

1 Introduction
 I. DATA ON POISONING INCIDENTS IN THE USA
 II. INITIAL APPROACHES TO THE TREATMENT OF POISONING
 III. THE GROWING USE OF ACTIVATED CHARCOAL
 IV. GENERAL REVIEW PAPERS
 V. REFERENCES

2 Historical Background of Activated Charcoal
 I. TERMINOLOGY
 II. EARLY HISTORY
 III. EVOLUTION OF METHODS FOR TESTING MEDICINAL CHARCOALS
 IV. REFERENCES

3 Fundamentals of Activated Charcoal and the Adsorption Process
 I. THE MANUFACTURE OF ACTIVATED CHARCOAL
 A. Carbonization
 B. Activation with Oxidizing Gases
 II. THE PROPERTIES OF ACTIVATED CHARCOAL
 A. Densities
 B. Pore Volume and Pore-Size Distribution
 C. Surface Area
 D. Nature of the Charcoal Surface
 III. THE NATURE OF THE ADSORPTION PROCESS
 A. Effect of Temperature
 B. Nature of the Solvent
 C. Surface Area of the Charcoal
 D. Pore Structure of the Charcoal
 E. Nature of the Solute
 F. pH of the Solution
 G. Presence of Inorganic Salts
<table>
<thead>
<tr>
<th>Section</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Competing Solutes</td>
<td>36</td>
</tr>
<tr>
<td>IV. DETERMINING ADSORPTION ISOTHERMS</td>
<td>37</td>
</tr>
<tr>
<td>A. The Langmuir Isotherm Equation</td>
<td>38</td>
</tr>
<tr>
<td>B. The Freundlich Isotherm Equation</td>
<td>41</td>
</tr>
<tr>
<td>C. Least-Squares Fitting of Data to Determine Isotherm Constants</td>
<td>43</td>
</tr>
<tr>
<td>D. Theoretical Aspects of Isotherm Equations</td>
<td>45</td>
</tr>
<tr>
<td>V. SUMMARY</td>
<td>46</td>
</tr>
<tr>
<td>VI. REFERENCES</td>
<td>47</td>
</tr>
</tbody>
</table>

4 Properties of Antidotal Charcoal

I. REQUIREMENTS OF THE U. S. PHARMACOPEIA	50
II. "SUPERACTIVE" CHARCOAL	53
III. CURRENTLY AVAILABLE USP CHARCOALS IN THE USA	55
IV. CURRENTLY AVAILABLE CHARCOAL PRODUCTS IN THE USA	56
V. OTHER CURRENTLY AVAILABLE CHARCOAL PRODUCTS	61
VI. THE "CONTAINER RESIDUE" ISSUE	64
VII. COMPARATIVE STUDIES OF ANTIDOTAL CHARCOALS	66
VIII. SUMMARY	70
IX. REFERENCES	71

5 The Nature of Drug Absorption, Distribution, and Elimination

I. THE EFFECT OF DRUG DOSAGE FORM	73
II. ROUTES OF DRUG ADMINISTRATION	75
III. THE ROLE OF pH IN DRUG ABSORPTION	75
IV. MECHANICAL ASPECTS OF GASTROINTESTINAL PHYSIOLOGY	77
V. ABSORPTION IN THE GASTROINTESTINAL TRACT	79
VI. DRUG FATE AFTER ABSORPTION	82
VII. GASTROINTESTINAL DIALYSIS AND INTERRUPTION OF THE ENTEROHEPATIC CYCLE	85
VIII. SUMMARY	88
IX. REFERENCES	89

6 Basic Details of Pharmacokinetic Modeling

I. INTRODUCTION	91
II. THE PHARMACOKINETICS OF INTRAVENOUSLY ADMINISTERED DRUGS	96
A. The One Compartment Open Model	98
B. The Two Compartment Open Model	103
III. MODELS WITH FIRST-ORDER DRUG ABSORPTION	105
A. One Compartment Open Model	105
B. Two Compartment Open Model	106
IV. EXAMPLES OF PHARMACOKINETIC CALCULATIONS	106
A. Area Under the Curve	107
B. Elimination Half-life	107
C. Estimating $t_{1/2}$ for Drug Absorption	107
D. Mean Residence Time	107
V. SUMMARY	108
VI. REFERENCES	108

7 Methods for Treating Poisoning and Drug Overdose

| I. GENERAL CHARACTERISTICS OF POISONED PATIENTS | 110 |
Contents

II. GENERAL OVERDOSE MANAGEMENT STRATEGIES 110
 A. Oral Dilution 113
 IV. INDUCED EMESIS WITH SYRUP OF IPECAC 115
 A. Toxicity of Ipecac 118
 B. Other Adverse Effects of Ipecac 120
 C. Success of Ipecac in Producing Emesis 120
 D. Comparison of Ipecac and Apomorphine in Producing Emesis 123
 E. Effectiveness of Ipecac and Apomorphine in Recovering Stomach Contents 124
 F. General Comments on the Use of Ipecac 126

V. GASTRIC LAVAGE 127
VI. COMPARISON OF IPECAC AND LAVAGE 130
VII. USE OF SALINE CATHARTICS OR SORBITOL 135
VIII. WHOLE-BOWEL IRRIGATION 138
IX. ALTERING DIURETIC PROCESSES 140
X. EXCHANGE TRANSFUSION 142
XI. HEMODIALYSIS AND HEMOPERFUSION 142
XII. SUMMARY 147
XIII. REFERENCES 149

8 The Design of Clinical Studies and Data Treatment 157
 I. RANDOMIZED CROSS-OVER AND OTHER TYPES OF STUDIES 157
 II. ASSESSMENT OF THE STATISTICAL SIGNIFICANCE OF DIFFERENCES IN TREATMENTS 159

9 Some Basic Aspects of Antidotal Charcoal 163
 I. CHARCOAL POWDER VERSUS TABLETED CHARCOAL 163
 II. OPTIMAL DOSE OF ACTIVATED CHARCOAL 166
 III. STABILITY OF THE DRUG/CHARCOAL COMPLEX 168
 IV. STORAGE STABILITY OF CHARCOAL SUSPENSIONS 174
 V. UNIVERSAL ANTIDOTE 175
 VI. EFFECT OF PEPSIN ON IN VITRO ADSORPTION 179
 VII. SUMMARY 180
 VIII. REFERENCES 182

10 The Classic Studies of Andersen 185
 I. ANDERSEN'S IN VITRO ADSORPTION STUDIES 185
 II. THE EFFECT OF pH 187
 III. ADSORPTION FROM GASTROINTESTINAL CONTENTS 189
 IV. FURTHER IN VIVO EXPERIMENTS 195
 V. REFERENCES 195

11 Effects of Activated Charcoal on Major Classes of Drugs and Chemicals 197
 I. COMMON HOUSEHOLD CHEMICALS 198
 II. ALKALOIDS 198
 III. ASPIRIN AND OTHER SALICYLATES 201
 A. In Vitro Studies 201
 B. In Vivo Studies 201
 IV. ACETAMINOPHEN AND INTERACTIONS WITH ACETYLCYSTEINE 204
 A. In Vitro Studies 205
 B. In Vivo Studies 205
C. Interactions with N-acetylcysteine 209

V. HYPNOTICS AND SEDATIVES 214
A. In Vitro Studies 214
B. In Vivo Studies 216

VI. TRICYCLIC ANTIDEPRESSANTS 220
A. Other In Vitro Studies 221
B. In Vivo Studies 222

VII. CARDIAC GLYCOSIDES 226

VIII. ORGANIC SOLVENTS 230

IX. ETHANOL 235

X. SUMMARY 238

XI. REFERENCES 239

12 Effect of Charcoal on Other Classes of Drugs 245

I. ANTIHISTAMINES 247
A. Chlorpheniramine 247
B. Diphenhydramine 250

II. ANTI-INFECTIVES 250
A. Antibiotics 250
B. Antituberculosis Agents 251
C. Antimalarial Agents 253
D. Quinolones: Ciprofloxacin 256
E. Sulfones: Dapsone 256
F. Urinary Anti-Infectives: Trimethoprim 257

III. CARDIAC DRUGS 257
A. Anti-Arrhythmics 257
B. Beta-Blockers 262
C. Calcium Channel-Blockers: Diltiazem 262

IV. CNS AGENTS 263
A. Analgesics 263
B. Anticonvulsants 267
C. Anti-Inflammatory Agents 270
D. Tranquilizers 271
E. Other CNS Agents: Methamphetamine 274

V. GASTROINTESTINAL DRUGS 275
A. Cimetidine 275
B. Propantheline 275
C. Diphenoxylate 275
D. Nizatidine 275

VI. ANTIDIABETIC SULFONYLUREAS 276

VII. RESPIRATORY RELAXANTS: THEOPHYLLINE 277
A. In Vitro Studies 278
B. Animal Studies 278
C. Human Volunteer Studies 278
D. Human Overdose Studies 280
E. Conclusions About Theophylline 281

VIII. ORGANIC SUBSTANCES 281
A. Camphor 281
B. Ethylene Glycol 281
C. Isopropanol and Acetone 281
D. Polybrominated Biphenyl 282
E. Herbicides 282
13 Effect of Administration Time, Food, and Gastric pH

I. EFFECT OF A DELAY IN ADMINISTRATION
 A. Aspirin and Other Salicylates
 B. Acetaminophen
 C. Barbiturates
 D. Tricyclic Antidepressants
 E. Cardiac Glycosides
 F. Theophylline
 G. Propoxyphene
 H. Other Drugs

II. EFFECT OF FOOD

III. EFFECT OF GASTRIC pH

IV. SUMMARY

V. REFERENCES

14 Effect of Multiple Doses of Charcoal

I. ASPIRIN

II. ACETAMINOPHEN

III. PHENOBARBITAL

IV. DIGOXIN AND DIGITOXIN
 A. Human Volunteer Studies with Subtoxic Doses
 B. Overdose Case Reports

V. TRICYCLIC ANTIDEPRESSANTS
 A. Human Volunteer Studies with Subtoxic Doses
 B. Overdose Case Reports

VI. THEOPHYLLINE
 A. Animal Studies
 B. Human Volunteer Studies with Subtoxic Oral Doses
 C. Human Volunteer Studies with Subtoxic IV Doses
 D. Human Overdose Case Reports

VII. QUININE

VIII. ANTIBIOTICS

IX. PROPOXYPHENE

X. DAPSONE

XI. CARBAMAZEPINE

XII. PHENYTOIN
 A. Human Studies with Subtoxic IV Doses
 B. Human Overdose Reports
XIII. PIROXICAM 341
XIV. OTHER DRUGS 341
A. Glutethimide and Barbital 341
B. Phenobarbital and Diazepam 341
C. Meprobamate 342
D. Diltiazem 342
E. Nadolol and Sotalol 342
F. Chlorpropamide 343
G. Cyclosporin 343
H. Phencyclidine 343
I. Paroxetine 343
J. Disopyramide 344
K. Methotrexate 344
XV. LIMITATIONS ON MULTIPLE-DOSE CHARCOAL THERAPY 344
XVI. SUMMARY 345
XVII. REFERENCES 350

15 Ipecac, Cathartics, and Charcoal: Interactions and Comparative Efficacies 357
I. EFFECT OF CHARCOAL ON IPECAC 357
II. COMPARATIVE EFFECTIVENESS OF IPECAC AND CHARCOAL 359
III. COMPARATIVE EFFECTIVENESS OF LAVAGE AND CHARCOAL 365
IV. COMPARATIVE EFFECTIVENESS OF WHOLE BOWEL IRRIGATION AND CHARCOAL 367
V. EFFECTS OF SORBITOL ON THE ACTION OF CHARCOAL 371
A. Some Preliminary Comments 372
B. Effects of Sorbitol on GI Transit Times 373
C. Dosage Recommendations for Sorbitol 374
D. Effect of Sorbitol on the Efficacy of Charcoal 375
E. Conclusions and Recommendations 382
VI. EFFECT OF SALINE CATHARTICS ON THE ACTION OF CHARCOAL 383
A. In Vitro Studies 383
B. In Vivo Studies 387
C. Summary and Conclusions 391
VII. SUMMARY 391
VIII. REFERENCES 392

16 The Development Of Palatable Formulations 397
I. PROVIDING LUBRICITY 398
II. PROVIDING FLAVOR 402
III. OTHER APPROACHES TO PALATABILITY 414
IV. SUMMARY 414
V. REFERENCES 415

17 Hazards Associated with Antidotal Charcoal Use 418
I. GENERAL TOXICITY OF CHARCOAL 418
II. ASPIRATION 419
III. PERFORATIONS 423
IV. BRONCHIOLITUS OBLITERANS 424
V. EMPYEMA 424
Contents

VI. INFECTIONS IN THE RESPIRATORY TRACT FROM NONSTERILE CHARCOAL 425
VII. ABDOMINAL DISTENSION FROM SORBITOL 425
VIII. HYPERNATREMIA AND HYPERMAGNESEMIA 426
IX. CONSTIPATING EFFECT OF CHARCOAL 431
X. OBSTRUCTIONS CAUSED BY CHARCOAL 432
XI. RECTAL ULCER WITH HEMORRHAGE 434
XII. CORNEAL ABRASIONS 434
XIII. "BLACK SMOKE SYNDROME" 435
XIV. SUMMARY 435
XV. REFERENCES 436

18 Effect of Charcoal on Various Inorganic Substances 439

I. ARSENIC 440
II. BORIC ACID 440
III. CESIUM 441
IV. IRON 441
V. LITHIUM 442
VI. PHOSPHORUS 442
VII. POTASSIUM 443
VIII. CYANIDE 443
IX. THALLIUM 444
X. SUMMARY 444
XI. REFERENCES 444

19 Effect of Charcoal on Endogenous Biochemicals 446

I. BILE SALTS 446
II. BILIRUBIN 447
III. EFFECT ON PRURITUS 450
IV. EFFECT ON ERYTHROPOIETIC PORPHYRIA 451
V. EFFECT ON UREMIC TOXINS 454
VI. HYPOLIPIDEMIC EFFECTS OF CHARCOAL 456
VII. EFFECTS IN LIVER DISEASE 460
VIII. PROLONGATION OF ANIMAL LIFESPAN 461
IX. SUMMARY 462
X. REFERENCES 463

20 Use of Charcoal to Treat Poisoning in Animals 467

I. INCIDENCE OF ANIMAL POISONING AND GENERAL GUIDELINES FOR CHARCOAL USE 467
II. VETERINARY ACTIVATED CHARCOAL PRODUCTS 468
III. COMMON SOURCES OF ANIMAL POISONS AND TOXINS 469
IV. POISONING BY PLANTS 470
V. POISONING DUE TO HERBICIDES, PESTICIDES, AND INSECTICIDES 472
VI. FUNGAL TOXINS FROM GRAINS 478
VII. TOXINS FROM ALGAE 481
VIII. OTHER TOXINS 481
IX. POISONING OF HOUSEHOLD PETS 482
X. SUMMARY 483
XI. REFERENCES 483
21 Reports from the Soviet Union

I. INTRODUCTION
II. ENTEROSORPTION STUDIES DESCRIBED BY NIKOLAEV
III. SOME OTHER STUDIES
IV. REFERENCES

22 Resins and Clays as Sorbents

I. BASIC TYPES AND PROPERTIES OF RESINS USED AS ANTIDOTES
II. BASIC TYPES AND PROPERTIES OF CLAYS
III. STUDIES INVOLVING CLAYS
IV. STUDIES INVOLVING RESINS
 A. General Studies of Ion Exchange Resins
 B. General Studies of Cholestyramine and Colestipol
 C. Effects of Cholestyramine and Colestipol in Cardiac Glycoside Overdoses
 D. Effects of Cholestyramine and Colestipol on Other Drugs
 E. Effects of Cholestyramine and Colestipol on Concomitant Drugs Taken Therapeutically
 F. Effects of Resins on Various Endogenous Biochemicals
 G. Use of Cholestyramine for Treating Hydrocarbon Toxicity
 H. Effect of Cholestyramine and Colestipol on Bacterial Toxins and Antibiotics
 I. Effect of Sodium Polystyrene Sulfonate on Inorganic Species
V. SUMMARY
VI. REFERENCES

23 Other Medicinal Uses of Charcoal in Humans

I. EFFECT OF CHARCOAL ON SURFACE WOUNDS
II. EFFECT OF CHARCOAL ON VARIOUS SKIN PROBLEMS
III. EFFECT ON GI TRACT BACTERIAL SEPSIS
IV. EFFECT ON INTESTINAL GAS
V. EFFECT ON DIARRHEA
VI. EFFECT ON PEPTIC ULCERS
VII. USE IN DEODORIZING OSTOMIES
VIII. USE IN THE TREATMENT OF ALCOHOLISM
IX. CHARCOAL AS A VEHICLE FOR PROLONGED-RELEASE MEDICATIONS
X. CHARCOAL INJECTED INTRAVENOUSLY
XI. SUMMARY
XII. REFERENCES

24 Other Biochemical and Biological Uses of Charcoal

I. SNAKE VENOM ADSORPTION
II. VIRUS ADSORPTION
III. BIOCHEMICAL FACTOR ADSORPTION
IV. BACTERIA ADSORPTION
V. BACTERIAL TOXIN ADSORPTION
VI. FUNGAL TOXIN ADSORPTION
VII. ADSORPTION OF ENZYMES AND OTHER PROTEINS
VIII. HORMONE ADSORPTION
IX. VITAMIN ADSORPTION
Contents

X. ADSORPTION OF WHISKEY CONGENERS 549
XI. CATALYSIS OF REACTIONS BY ACTIVATED CHARCOAL 550
XII. MISCELLANEOUS COMPOUNDS ADSORBED BY CHARCOAL 551
XIII. CHARCOAL USE IN CONCENTRATING DRUGS FROM BIOLOGICAL FLUIDS 551
XIV. USE OF CHARCOAL IN THE ASSAY OF BIOCHEMICALS 552
XV. PROTECTION OF CROP PLANT SEEDLINGS FROM HERBICIDE DAMAGE 554
XVI. EFFECT OF CHARCOAL ON PLANT TISSUE CULTURES 558
XVII. EFFECT OF CHARCOAL ON BACTERIAL CULTURES 559
XVIII. EFFECTS OF CHARCOAL ON INSECTS 562
XIX. SUMMARY 563
XX. REFERENCES 564

25 Summary 571

I. POSITIVE ASPECTS OF ACTIVATED CHARCOAL 571
II. SOME NEGATIVE ASPECTS OF ACTIVATED CHARCOAL 572
III. UNSETTLED ISSUES 573
IV. RECOMMENDATIONS 574
V. REFERENCES 575

Index 577