Contents

<table>
<thead>
<tr>
<th>List of Contributors</th>
<th>page xii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to first edition</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>xv</td>
</tr>
<tr>
<td>List of symbols</td>
<td>xvi</td>
</tr>
<tr>
<td>Dune Meadow Data</td>
<td>xix</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Types of ecological research
1.2 Steps in research in community and landscape ecology
1.3 Implementing ecological research
1.4 Terminology
1.5 Historical notes

2 Data collection

2.1 Data collection, not an isolated or undirected activity
2.2 Objectives and data collection, start by defining the finish
2.3 Planning of data collection
2.3.1 Study design
2.3.2 Study type
2.3.3 Sampling strategy
2.4 Analysis of data and data collection
2.4.1 Introduction
2.4.2 Measurement scales
2.4.3 Frequency distributions
2.4.4 Transformations
2.5 Interpretation of results
2.6 Sources of misinterpretation
2.6.1 Incorrect use of statistical analysis
2.6.2 Taking detection to be proof
2.6.3 Misinterpretation caused by biased sampling
2.6.4 Other sources of misinterpretation
2.7 Complexity of ecological research
2.8 Bibliographical notes
2.9 Exercise
2.10 Solution to the exercise
6.2.1 Introduction
6.2.2 Similarity and dissimilarity
6.2.3 Properties of the indices
6.2.4 Transformation, standardization and weighting
6.2.5 Agglomerative cluster algorithms
6.3 Divisive methods
6.3.1 Introduction
6.3.2 Association analysis and related methods
6.3.3 Two Way Indicator Species Analysis
6.4 Non-hierarchical clustering
6.5 Optimality of a clustering
6.6 Presentation of the results
6.7 Relation between community types and environment
6.7.1 The use of simple descriptive statistics
6.7.2 The use of tests of significance
6.8 Bibliography
6.9 Exercises
6.10 Solutions to exercises

7 Spatial aspects of ecological data
7.1 Introduction
7.2 Trend-surface analysis
7.2.1 Introduction
7.2.2 One-dimensional trends
7.2.3 Extensions to non-normally distributed variables
7.2.4 Non-linear dependence of Z and X
7.2.5 Two-dimensional surfaces
7.2.6 Trend-surfaces as interpolators
7.2.7 Use of trend surfaces
7.2.8 Local trends
7.3 Spatial autocovariation
7.3.1 Introduction
7.3.2 Stationarity
7.3.3 Statistical moments of spatial series
7.3.4 Autocovariograms and semivariograms
7.3.5 Example of the use of autocorrelation analysis
7.3.6 Considerations of non-stationarity
7.3.7 The semivariogram, its properties and uses
7.3.8 Isotropic and anisotropic variation
7.3.9 The semivariogram as a structural tool
7.3.10 An example of using semivariograms to analyse spatial variation in soil
7.4 Spatial interpolation
7.4.1 Introduction
7.4.2 Weighted moving averages
7.4.3 Optimum interpolation methods using spatial autocovariance