Advances in Pharmacology

Volume 30

Edited by

J. Thomas August
Department of Pharmacology and Molecular Sciences
Johns Hopkins University
School of Medicine
Baltimore, Maryland

M. W. Anders
Department of Pharmacology
University of Rochester
Rochester, New York

Ferid Murad
Molecular Geriatrics Corporation
Lake Bluff, Illinois

Joseph T. Coyle
McLean Hospital
Harvard Medical School
Boston, Massachusetts

Academic Press
San Diego New York Boston London Sydney Tokyo Toronto
Contents

Contributors ix

Neuroprotective Actions of Excitatory Amino Acid Receptor Antagonists
V. L. Woodburn and G. N. Woodruff

I. Introduction 1
II. Glutamate Receptor Subtypes 2
III. Excitotoxicity and Glutamate 9
IV. Ischemia 13
V. Prospects for Clinical Application 16
VI. Molecular Events Associated with Neuroprotection 19
VII. Conclusions 21
References 21

Pharmacologic Therapy of Obsessive Compulsive Disorder
Joseph DeVeauh-Geiss

I. Clinical Features of Obsessive Compulsive Disorder 35
II. Biology of OCD 38
III. Pharmacologic Treatment of OCD 39
IV. Summary 47
References 48

Mechanism of Action of Antibiotics in Chronic Pulmonary Pseudomonas Infection
Niels Høiby, Birgit Giwercman, Elsebeth Tvenstrup Jensen, Svend Stenvang Pedersen, Christian Koch, and Arsalan Kharazmi

I. Introduction 53
II. Bacterial Biofilms 54
III. Pseudomonas aeruginosa in Cystic Fibrosis 58
IV. Antibiotic Therapy of Intermittent and Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis 67
V. Conclusions 75
References 75
Quinolinic Acid in Neurological Disease: Opportunities for Novel Drug Discovery
John F. Reinhard, Jr., Joel B. Erickson, and Ellen M. Flanagan

I. General Properties of Quinolinic Acid 85
II. Neurotoxicity of Quinolinic Acid 86
III. Pathways for Quinolinic Acid Biosynthesis 91
IV. Sites of Control of Quinolinic Acid Biosynthesis 97
V. Studies on Quinolinate in Vivo 100
VI. Inhibitors of Quinolinic Acid Biosynthesis 115
VII. Implications for Drug Discovery 117
References 118

Pharmacologic Management of Shock-Induced Renal Dysfunction
Anupam Agarwal, Gunnar Westberg, and Leopoldo Raij

I. Introduction to Shock 129
II. Spectrum of Renal Dysfunction in Shock 133
III. Pathophysiology of Acute Renal Failure in Shock 136
IV. Pharmacologic Measures 149
V. Conclusion 177
References 178

Autoantibodies against Cytochromes P450: Role in Human Diseases
Philippe Beaune, Dominique Pessayre, Patrick Dansette, Daniel Mansuy, and Michael Manns

I. Introduction 199
II. Diseases for Which No Causative Toxin Was Identified 200
III. Diseases for Which a Causative Drug Has Been Identified 207
IV. Hypotheses for the Appearance and Role of Anti-P450 Autoantibodies 232
V. Conclusions 234
References 236
Activation and Inactivation of Gene Expression Using RNA Sequences

Boro Dropulic, Stephen M. Smith, and Kuan-Teh Jeang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>247</td>
</tr>
<tr>
<td>II. Examples of RNA-Mediated Gene Regulation</td>
<td>248</td>
</tr>
<tr>
<td>III. Pharmacological Applications of RNAs</td>
<td>254</td>
</tr>
<tr>
<td>IV. Concluding Remarks</td>
<td>262</td>
</tr>
<tr>
<td>References</td>
<td>262</td>
</tr>
</tbody>
</table>

Therapy of Cancer Metastasis by Systemic Activation of Macrophages

Isaiah J. Fidler

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>271</td>
</tr>
<tr>
<td>II. Cancer Metastasis</td>
<td>272</td>
</tr>
<tr>
<td>III. Macrophages and Homeostasis</td>
<td>274</td>
</tr>
<tr>
<td>IV. Tumoricidal Activation of Macrophages</td>
<td>275</td>
</tr>
<tr>
<td>V. Macrophage–Tumor Cell Interaction</td>
<td>277</td>
</tr>
<tr>
<td>VI. Mechanisms for Macrophage Recognition of Tumor Cells</td>
<td>279</td>
</tr>
<tr>
<td>VII. Systemic Activation of Macrophages by Liposomes Containing Immunomodulators</td>
<td>282</td>
</tr>
<tr>
<td>VIII. Macrophage Infiltration into Tumors</td>
<td>288</td>
</tr>
<tr>
<td>IX. Therapy of Cancer Metastasis in Murine Models</td>
<td>289</td>
</tr>
<tr>
<td>X. Optimization and Limitations of Systemic Macrophage Activation-Based Therapy</td>
<td>291</td>
</tr>
<tr>
<td>XI. Potentiation of Macrophage Activation for Treatment of Cancer Metastases with Liposome-Encapsulated Agents</td>
<td>293</td>
</tr>
<tr>
<td>XII. Multimodality Treatment of Lung Metastases in Murine Models</td>
<td>296</td>
</tr>
<tr>
<td>XIII. Therapy of Spontaneous Lung Metastases in Dogs with Osteogenic Sarcoma</td>
<td>299</td>
</tr>
<tr>
<td>XIV. Clinical Studies</td>
<td>300</td>
</tr>
<tr>
<td>XV. The Place of Macrophage Systemic Activation in Multimodality Protocols</td>
<td>309</td>
</tr>
<tr>
<td>XVI. Conclusions</td>
<td>311</td>
</tr>
<tr>
<td>References</td>
<td>312</td>
</tr>
</tbody>
</table>

5-Hydroxytryptamine Receptor Subtypes: Molecular and Functional Diversity

Frédéric Saudou and René Hen

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>327</td>
</tr>
<tr>
<td>II. G-Protein-Coupled 5-HT Receptors</td>
<td>331</td>
</tr>
</tbody>
</table>
Contents

III. 5-HT-Gated Ion Channels–5-HT$_3$ Receptors 363
IV. Conclusion 366
 References 367

Index 381
Contents of Previous Volumes 389