Contents

1 Pathways of drug metabolism 1

1.1 Introduction 1

1.2 Phase I metabolism 2
  1.2.1 Oxidations involving the microsomal mixed-function oxidase (cytochrome P450) 2
  1.2.2 Oxidation other than the microsomal mixed-function oxidase 7
  1.2.3 Reductive metabolism 9
  1.2.4 Hydrolysis 11
  1.2.5 Hydration 12
  1.2.6 Other phase I reactions 12
  1.2.7 Summary of phase I metabolism 12

1.3 Phase II metabolism 13
  1.3.1 Conjugation with sugars 13
  1.3.2 Sulfation 16
  1.3.3 Methylation 17
  1.3.4 Acetylation 19
  1.3.5 Amino acid conjugation 19
  1.3.6 Glutathione conjugation 20
  1.3.7 Fatty acid and cholesteryl ester conjugation 23
  1.3.8 Condensation reactions 23
  1.3.9 Stereoselective reactions 23
  1.3.10 Summary of phase II metabolism 24

1.4 Summary 24

1.5 Endogenous metabolism related to drug metabolism 24
  1.5.1 Phase I 25
  1.5.2 Phase II 30

1.6 General summary 33

Further reading 33

2 Enzymology and molecular mechanisms of drug metabolism reactions 35

2.1 Introduction 35

2.2 Cytochrome P450-dependent mixed function oxidation reactions 37
  2.2.1 Components of the M.F.O. system 37
  2.2.2 Catalytic cycle of cytochrome P450 43

2.3 Microsomal flavin-containing monooxygenase 50

2.4 Prostaglandin synthetase-dependent co-oxidation of drugs 51

2.5 Reductive drug metabolism 54

2.6 Epoxide hydrolase 57

2.7 Glucuronide conjugation reactions 59

2.8 Glutathione-S-transferase 63

2.9 Sulfate conjugation 66

2.10 Amino acid conjugation 67

2.11 Control and interactions of drug metabolism pathways 68
  2.11.1 Substrate and oxygen availability 69
  2.11.2 NADPH supply 69
  2.11.3 Synthesis and degradation of cytochrome P450 70
  2.11.4 Control of drug metabolism by endogenous co-substrates 72
2.11.5 Participation of cytochrome b₅
2.11.6 Glucuronidation
2.11.7 Cellular competition for glutathione

Further reading

3 Induction and inhibition of drug metabolism

3.1 Introduction
3.2 Induction of drug metabolism
  3.2.1 Induction of drug metabolism in man
  3.2.2 Induction of drug metabolism in experimental animals
  3.2.3 Role of cytochrome P450 in the induction of drug metabolism
  3.2.4 Induction of multiple forms (isoenzymes) of cytochrome P450
  3.2.5 Significance of multiple forms of cytochrome P450
  3.2.6 Induction of extrahepatic drug metabolism
  3.2.7 Mechanisms of cytochrome P450 induction
  3.2.8 Induction of non-cytochrome P450 drug-metabolising enzymes
3.3 Inhibition of drug metabolism
  3.3.1 Inhibition of drug metabolism by destruction of hepatic cytochrome P450
  3.3.2 Metal ions and hepatic cytochrome P450
  3.3.3 Inhibition of drug metabolism by compounds forming inactive complexes with hepatic cytochrome P450
  3.3.4 Inhibition of drug metabolism: miscellaneous drugs and xenobiotics
3.4 Conclusions

Further reading

4 Factors affecting drug metabolism: internal factors

4.1 Introduction
4.2 Species differences
4.3 Genetic (strain/racial) differences
  4.3.1 Mechanism of control of species and genetic differences
4.4 Age
  4.4.1 Development of phase I metabolism
  4.4.2 Control of development of phase I metabolism
  4.4.3 Development of phase II metabolism
4.5 Hormonal control of drug metabolism
  4.5.1 Pituitary gland
  4.5.2 Sex glands
  4.5.3 Mechanism of control of sex differences
  4.5.4 Thyroid glands
  4.5.5 Pancreas
  4.5.6 Pregnancy
4.6 The effects of disease on drug metabolism
  4.6.1 Cirrhosis
  4.6.2 Alcoholic liver disease
  4.6.3 Viral hepatitis
  4.6.4 Hepatoma
  4.6.5 Summary of effects of liver diseases on drug metabolism
  4.6.6 Non-hepatic diseases

5 Factors affecting drug metabolism: external factors

5.1 Introduction
5.2 Dietary factors
  5.2.1 Macronutrients
  5.2.2 Micronutrients
# Contents

5.2.3 Non-nutrients 143  
5.2.4 Tobacco smoking 145  
5.3 Environmental factors 146  
5.3.1 Heavy metals 147  
5.3.2 Industrial pollutants 149  
5.3.3 Pesticides 152  
5.4 Relative importance of physiological and environmental factors in determining drug-metabolising capacity in the human population 153  
Further reading 154  

6 Pharmacological and toxicological aspects of drug metabolism 157  
6.1 Introduction 157  
6.2 Pharmacological aspects of drug metabolism 157  
6.2.1 Pharmacological deactivation 158  
6.2.2 Pharmacological activation 160  
6.2.3 Change in type of pharmacological response 162  
6.2.4 No change in pharmacological activity 163  
6.2.5 Change in drug uptake 164  
6.2.6 Change in drug distribution 165  
6.2.7 Enterohepatic circulation 165  
6.3 Toxicological aspects of xenobiotic metabolism 166  
6.3.1 Metabolism resulting in increased toxicity 166  
6.3.2 Metabolism resulting in decreased toxicity 171  
6.4 Balance of toxifying and detoxifying pathways 172  
6.5 Assessment of human drug-metabolising enzymes in pharmacology and toxicology 176  
6.6 Conclusions 177  
Further reading 178  

7 Pharmacokinetics and the clinical relevance of drug metabolism 180  
7.1 Introduction 180  
7.2 Pharmacokinetics 181  
7.2.1 The one-compartment model 182  
7.2.2 The two-compartment model 184  
7.2.3 Kinetic order of reaction 187  
7.2.4 Clinical application of pharmacokinetics 187  
7.2.5 Hepatic drug clearance 190  
7.2.6 Pharmacokinetics: a summary 191  
7.3 Methods of studying drug metabolism in man 191  
7.3.1 In vivo clearance 192  
7.3.2 Breath analysis 193  
7.3.3 In vitro methods 194  
7.3.4 Non-invasive methods 197  
7.3.5 In vivo/in vitro correlations of drug metabolism 198  
7.4 Clinical relevance of drug metabolism 199  
7.4.1 Effects of disease 199  
7.4.2 Genetic polymorphism in human drug metabolism 203  
7.4.3 Induction and inhibition of drug metabolism 208  
7.5 Summary 213  
Further reading 214  

8 Techniques and experiments illustrating drug metabolism 217  
8.1 Introduction 217  
8.2 In vitro assays for drug-metabolising enzymes 217
# INTRODUCTION TO DRUG METABOLISM

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.1</td>
<td>Preparation of tissue homogenates</td>
<td>217</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Induction of hepatic drug-metabolising enzymes</td>
<td>220</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Protein determination</td>
<td>220</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Cofactor solutions</td>
<td>222</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Spectral determination of cytochrome P450</td>
<td>223</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Spectral determination of cytochrome b5</td>
<td>225</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Spectral determination of substrate binding to hepatic microsomal cytochrome P450</td>
<td>226</td>
</tr>
<tr>
<td>8.2.8</td>
<td>NADPH-cytochrome c (P450) reductase</td>
<td>228</td>
</tr>
<tr>
<td>8.2.9</td>
<td>Assay of aniline 4-hydroxylase activity</td>
<td>230</td>
</tr>
<tr>
<td>8.2.10</td>
<td>Assay of aminopyrine N-demethylase activity</td>
<td>232</td>
</tr>
<tr>
<td>8.2.11</td>
<td>Assay of 4-nitroanisole O-demethylase activity</td>
<td>234</td>
</tr>
<tr>
<td>8.2.12</td>
<td>Resorufin O-dealkylase assays</td>
<td>236</td>
</tr>
<tr>
<td>8.2.13</td>
<td>Assay for glucuronosyl transferase activity</td>
<td>236</td>
</tr>
<tr>
<td>8.2.14</td>
<td>Assay for glutathione-S-transferase activity</td>
<td>238</td>
</tr>
<tr>
<td>8.2.15</td>
<td>Additional in vitro assays for drug metabolism</td>
<td>240</td>
</tr>
<tr>
<td>8.3</td>
<td>Factors affecting drug metabolism</td>
<td>240</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Experiment 1. Cofactor requirements of drug metabolism</td>
<td>240</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Experiment 2. Factors affecting drug metabolism</td>
<td>245</td>
</tr>
<tr>
<td>8.4</td>
<td>Induction and inhibition of drug metabolism and a correlation of in vivo drug action with in vitro hepatic drug-metabolising activity</td>
<td>247</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Introduction</td>
<td>247</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Experiment 1. The duration of action of the hypnotic drug pentobarbitalone</td>
<td>248</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Experiment 2. Influence of pretreatment on the in vitro N-demethylation of aminopyrine and microsomal cytochrome P450 content</td>
<td>249</td>
</tr>
<tr>
<td>8.5</td>
<td>Urinary excretion of paracetamol in man</td>
<td>251</td>
</tr>
<tr>
<td>8.6</td>
<td>Practice problem</td>
<td>256</td>
</tr>
</tbody>
</table>

Index 259