Contents

Preface v

List of Contributors vii

Chapter 1. Upper airway: structure, function and therapy,
by Niels Mygind 1

1. Introduction 1
2. Anatomy of the nose 2
 2.1. Surface epithelium 2
 2.2. Blood vessels 4
 2.3. Submucosal glands 6
 2.4. Nerves 8
3. Applied physiology of the nose 9
 3.1. Nasal airways 9
 3.2. Heating and humidification 10
 3.3. Filtration 13
4. Pathology of rhinitis 13
 4.1. Allergic rhinitis 13
 4.2. Primary ciliary dyskinesia 15
 4.3. The common cold 16
5. Aerosol therapy in the nose 16
 5.1. Drug absorption 16
 5.2. Rhinitis therapy 17
 5.3. Systemic drug delivery in the nose 18
 5.4. Spray types 18
 5.4.1. Drop-bottle pipette 18
 5.4.2. Aqueous pump spray 18
 5.4.3. Preservatives 19
 5.4.4. Pressurized metered-dose inhaler 20
 5.5. Side effects 22
 5.6. Nasal inhalation for the treatment of airway disease 22
6. Pharynx and larynx 22

References 25
Chapter 2. Lower airway: structure and function, by James B. Forrest

1. Introduction
2. General organization of lung structure
 2.1. Lung structural units
 2.1.1. Lobes
 2.1.2. Bronchopulmonary segments
 2.1.3. Lobules
 2.1.4. Acinus
 2.2. Airway morphology and geometry
 2.2.1. Conducting airways
 2.2.2. Acinus
 2.3. Lung development
 2.3.1. Development of cell types in the lung
 2.3.1.1. Primitive fetal cell
 2.3.1.2. Ciliated cells
 2.3.1.3. Primary cilia
 2.3.1.4. Ciliated cells (surface border cilia)
 2.3.1.5. Mucus-secreting and serous-secreting cells
 2.3.1.6. Intermediate cell
 2.3.1.7. Basal cells
 2.3.1.8. Lymphocytes
 2.3.1.9. Mast cell (globule leucocyte)
 2.3.1.10. Kultschitsky cell (clear or argyrophilic)
 2.3.1.11. Clara cell
 2.3.1.12. Brush cell
 2.3.1.13. Nerve cells
 2.3.1.14. Submucous gland
 2.3.1.15. Smooth muscle
 2.3.1.16. Connective tissue
 2.3.1.17. Parenchymal cells
 2.3.2. Structure of the alveolar capillary barrier
 2.3.2.1. Alveolar epithelium
 2.3.2.2. Type 1 pneumonocyte
 2.3.2.3. Type 2 pneumonocyte
 2.3.2.4. Type 3 pneumonocyte (alveolar brush cell)
 2.3.2.5. Capillary endothelium
 2.3.2.6. Pericyte
 2.3.2.7. Interstitial elements and cells
 2.3.2.8. Alveolar macrophage
 2.3.2.9. Other migratory cells
 2.4. Functional airway morphology
 2.4.1. Structural aspects of airway compliance
 2.4.2. Airway innervation
 2.4.3. Bronchial circulation
 2.5. Summary

Acknowledgments
References

Chapter 3. Aerosol characterization and generation, by David L. Swift

1. Characteristics of aerosols
 1.1. Definitions
Chapter 4. Airflow dynamics in the human airways, by H.K. Chang and A.S. Menon

1. Introduction 85
2. Airway models 87
3. Flow in the large airways (trachea, main and lobar bronchi) 88
 3.1. Steady axial velocity profiles 91
 3.2. Secondary velocities in steady flow 97
 3.3. Velocity profiles in oscillatory flow 100
 3.3.1. Quasi-steadiness in oscillatory flows 104
 3.3.2. Peak oscillatory velocity profiles 105
 3.3.3. Effect of the larynx on the oscillatory profiles 108
4. Flow in the upper airways (nose, nasopharynx, mouth, oropharynx, pharynx and anterior larynx) 111
5. Relevance of fluid dynamics to particle deposition 113
References 115

Chapter 5. Mechanisms of particle deposition and clearance, by Joseph D. Brain and James D. Blanchard

1. Introduction 117
2. Particle transport and deposition mechanisms 118
 2.1. Sedimentation 119
 2.2. Inertial impaction 120
 2.3. Diffusion 121
 2.4. Electrostatic attraction 122
 2.5. Interception and other deposition processes 124
3. Characterizing and delivering therapeutic aerosols 124
4. Factors influencing particle deposition 126
 4.1. Anatomy of the respiratory tract 126
 4.2. Choice of pathway 127
 4.3. Particle size and distribution 128
 4.4. Hygroscopicity and evaporation 130
 4.5. Breathing pattern 131
 4.6. Disease 133
Chapter 7. *Aerosols in diagnosis: ventilation, airway penetrance, epithelial permeability, mucociliary transport and airway responsiveness*, by Myrna B. Dolovich, Donald W. Cockcroft and Geoffrey Coates

1. Introduction 195
 1.1. Instrumentation 197

2. Aerosols and the assessment of ventilation 198
 2.1. Pulmonary embolism 199
 2.2. Aerosol ventilation technique 201

3. Aerosol ‘penetrance’ in the assessment of airway obstruction 204

4. Aerosols and airway pharmacological responses 207
 4.1. Lung deposition and bronchodilation 211
 4.2. Lung deposition and induced bronchoconstriction 212

5. Aerosols in the assessment of pulmonary epithelial permeability 213

6. Aerosols in the assessment of mucociliary transport 215
 6.1. Radioactive aerosol technique for lung clearance 216
 6.2. Tracheal mucus velocity 216

7. Use of aerosols in assessment of airway responsiveness 218
 7.1. Measurement of non-allergic airway (hyper-)responsiveness: histamine and methacholine inhalation tests 218
 7.1.1. Histamine and methacholine inhalation test methods 218
 7.1.2. Technical factors 219
 7.1.2.1. Aerosol generation 219
 7.1.2.2. Method of inhalation 219
 7.1.2.3. Handling of solutions 220
 7.1.2.4. Measurement of response 220
 7.1.2.5. Expression of results 220
 7.1.2.6. Tidal breathing method 221
 7.1.2.7. Hand-held nebulizer system 221
 7.1.3. Non-technical factors 222
 7.1.4. Comparison of results by different methods 222
 7.1.5. Clinical relevance 222
 7.1.5.1. Diagnosis of asthma 222
 7.1.5.2. Assessment of occupational asthma 225
 7.1.5.3. Severity of asthma 225
 7.1.5.4. Monitoring treatment 226
 7.2. Measurement of responsiveness to sensitizing stimuli 226
 7.2.1. Allergen inhalation tests 226
 7.2.2. Occupational challenges 228

Acknowledgement 229

References 229

Chapter 8. *Epithelial permeability*, by Richard M. Effros 235

1. Introduction 235

2. Correlation of structure and permeability 235
3. Indicator properties which affect transport 236
4. Reflection coefficients of the pulmonary epithelium 237
5. Radioaerosol studies 240
6. Active transport across the pulmonary epithelium 243
7. Clinical applications of radioaerosol clearance 244
References 244

Chapter 9. *Airway mucus clearance and mucociliary transport*,
by Per Camner and Björn Mossberg 247

1. Introduction 247
2. Basic data 249
3. Importance of mucociliary clearance 251
4. Lung diseases 252
 4.1. General aspects 252
 4.2. Bronchiectasis 252
 4.3. Chronic bronchitis 253
 4.4. Bronchial asthma 254
 4.5. Lung cancer 254
 4.6. Other chronic diseases 255
 4.7. Acute infections 255
5. Interventions 256
6. Environmental factors 256
References 257

Chapter 10. *Bronchial asthma, chronic bronchitis and pulmonary parenchymal diseases*, by Olof Selroos 261

1. Introduction 261
2. Drugs for inhalation 261
 2.1. β-Receptor-stimulating agents 261
 2.2. Anticholinergic bronchodilators 264
 2.3. Disodium cromoglycate 264
 2.4. Nedocromil sodium 265
 2.5. Corticosteroids 265
 2.6. α1-Antitrypsin 267
 2.7. Mucolytics 267
 2.8. Water and saline aerosols 268
 2.9. Diuretics 268
 2.10. Surfactant 269
3. Delivery systems 269
 3.1. Metered-dose inhalers 269
 3.2. Spacers attached to metered-dose inhalers 271
 3.2.1. Tube spacers 272
 3.2.2. Holding chambers 272

xvi
Chapter 14. Particle size analysis of therapeutic aerosols, by G.W. Hallworth

1. Introduction
2. Drug and excipient powders
 2.1. Microscopy and dispersion
 2.2. Laser diffraction
 2.3. Electrozone and photozone counters
 2.4. Disc centrifuge
3. Pressurized metered-dose inhalers: spray droplet size
 3.1. Spray characteristics and general methods
Chapter 15. Therapeutic aerosol deposition in man, by Stephen P. Newman

1. Therapeutic aerosol delivery systems
 1.1. Types of devices
 1.2. Potential importance of deposition
 1.3. Difficulty of predicting deposition

2. Drug recovery and pharmacokinetics

3. Labelling techniques
 3.1. Drugs labelled with β-ray emitters
 3.2. Drug studies with γ-ray emitters
 3.3. Inert particles and droplets

4. Monitoring techniques
 4.1. γ-Camera
 4.2. Other measurements
 4.3. Control of breathing manoeuvre

5. Deposition studies with nebulizers
 5.1. Percentage of dose reaching the lungs
 5.2. Type of nebulizer
 5.3. Breathing pattern
 5.4. Selective deposition and targeting

6. Deposition studies with pressurized metered-dose inhalers
 6.1. Percentage of dose reaching the lungs
 6.2. Changes in inhalation mode
 6.3. Auxiliary devices
 6.4. Physicochemical factors
Chapter 16. Occupational and environmental aerosols. Characterization and clinical relevance, by David C.F. Muir and Dave K. Verma

1. Introduction
2. Size-selective dust sampling
3. The association of particulates with other pollutants
4. The extent of the health problem
5. The working environment
 5.1. Sampling strategy
 5.1.1. Personal sampling where a portable sampling device is carried by the worker
 5.1.2. Breathing zone sampling
 5.1.3. General area sampling
 5.2. Size-selective sampling
 5.2.1. Total dust sampling
 5.2.2. Respirable dust sampling
 5.3. Airborne dust-sampling devices
 5.3.1. Methods based on counting particles
 5.3.1.1. The konimeter
 5.3.1.2. Impingers
 5.3.1.3. Thermal precipitators
 5.3.2. Gravimetric sampling
 5.3.2.1. The horizontal elutriator
 5.3.2.2. Cyclones
 5.3.2.3. Inhalable dust samplers
 5.3.3. Direct reading instruments and automated counting
6. Correlation between various dust-measuring devices
7. Community air pollution
 7.1. The smoke stain
 7.2. Hi-volume dust sampler
 7.3. Size-selective samplers
 7.4. Correlation between different sampling systems
8. Indoor air pollution
9. Summary
References
Subject index