Immunopharmacology of the Gastrointestinal System

edited by

John L. Wallace
Gastrointestinal Research Group
University of Calgary
Calgary, Alberta, Canada
Contents

Contributors ix
Series Preface xi
Preface xiii

1. Neuromodulation of Gastrointestinal Immune and Inflammatory Responses 1

A. Dean Befus

1. Introduction 1
1.1 Neurogenic Inflammation 2
1.2 Neuroimmunology of the Gastrointestinal Tract 3

2. The Intestinal Immune System 3
2.1 Gut-associated Lymphoid Tissue GALT 3
2.2 Specialized Cells of the Mucosal Immune System 4
 2.2.1 IgA Development 5
 2.2.2 Intraepithelial Leucocytes 5
 2.2.3 Gastrointestinal Mast Cell Populations 5

3. Innervation of the Gastrointestinal Tract 6
4. Inflammation and Gastrointestinal Neuroplasticity 7
5. Neuroregulation of Cells of the Mucosal Immune System 8
 5.1 Lymphocytes and the IgA Cell Cycle 8
 5.2 Intraepithelial Leucocytes 10
 5.3 Mast Cell Populations 10
 5.4 Other Cells 11

6. Integration of Intestinal Neuroimmunology 11
7. References 12

2. Immunomodulation of the Gastrointestinal Epithelium 15

Mary H. Perdue and Derek M. McKay

1. Introduction 15
2. Epithelial Form and Function 16
3. Antigen in Sensitized Hosts 17
 3.1 Parasite/Rat Model 17
 3.1.1 Nippostrongylus Brasiliensis 17
 3.1.2 Trichinella Spiralis 19
 3.2 Egg Albumin/Rodent Model 19
 3.2.1 Prolonged Antigen Exposure 20
 3.3 β-Lactoglobulin/Guinea Pig Model 21

4. Immunocompetent Cells 21
 4.1 Mast cells 21
 4.1.1 Histamine 22
 4.1.2 Serotonin 22
 4.1.3 Adenosine 23
 4.1.4 Eicosanoids 23
 4.1.4.1 Leukotrienes 23
 4.1.4.2 Prostaglandins 24
 4.1.5 Platelet-activating Factor 24
 4.2 Phagocytes 25
 4.2.1 Reactive Oxygen Metabolites 25
 4.2.2 Bacterial Peptides 26
 4.3 Lymphocytes 26
 4.3.1 Antibody Production 27
 4.3.2 Cytokines 27
 4.4 Intraepithelial Leucocytes 29

5. Fibroblasts 29
6. Goblet Cells 30

7. Neuronal Amplification and Inhibition of GI Epithelium 30
8. Negative Feedback “Off” Mechanisms 31
9. Pharmacological Modification of Epithelial Function 32
10. Conclusions 32
11. Acknowledgements 33
12. References 34
3. The Immune Modulation of Intestinal Motor Function 41
 Stephen M. Collins

1. Overview 41
2. Evidence of Altered Motor Function in vivo in the Inflamed Gut 41
 2.1 Studies in Man 41
 2.2 Studies in Animals 42
 2.2.1 Studies in Animal Models of Intestinal Inflammation 42
 2.2.2 Studies in Animal Models of Colitis 42
 2.2.3 Studies in Animal Models of Intestinal Sensitization 43
3. Structural Abnormalities in the Motor System in Inflamed Gut 43
 3.1 Studies in Man 43
 3.1.1 Changes in Enteric Nerves 43
 3.1.2 Changes in Smooth Muscle 44
 3.1.3 Structural Relationships Between Immune Cells, Enteric Nerves and Smooth Muscle 44
 3.2 Studies in Animals 44
4. Altered Contractility of Muscle in the Inflamed Gut 44
 4.1 Studies in Man 44
 4.2 Studies in Animals 45
 4.2.1 Studies in vivo on Smooth Muscle from the Inflamed Intestine 45
 4.2.2 Studies in vivo on Smooth Muscle in Animal Models of Colitis 46
 4.2.3 Smooth Muscle Function in Immunodeficient Mice 46
5. Changes in Enteric Nerve Function in the Inflamed Gut 46
 5.1 Studies in Man 46
 5.2 Studies in Animals 46
6. Conclusions 47
7. Acknowledgements 47
8. References 47

4. Modulation of Neutrophil Function as a Mode of Therapy for Gastrointestinal Inflammation 51
 Iqbal S. Sandhu and Matthew B. Grisham

1. Introduction 51
2. Neutrophil-derived Reactive Oxygen Metabolism 52
 2.1 Superoxide Radical 53
 2.2 Hydrogen Peroxide 53
 2.3 Hydroxyl Radical 53
 2.4 Peroxyl Radicals 54
 2.5 Hypohalous Acids and N-halogenated Amines 55
 2.6 Biological Activity of Reactive Oxygen Metabolites 56
3. Antioxidants and Free Radical Scavengers 57
 3.1 Superoxide Dismutase 57
 3.2 Catalase 58
 3.3 Glutathione Peroxidase 58
 3.4 Nonenzymatic Antioxidants 58
3.5 Antioxidants in the Gastrointestinal Tract 58
4. Role of Neutrophils and Oxidants in Gastrointestinal Inflammation: Mechanistic and Pharmacologic Approaches 59
5. Neutrophil-derived Proteases 62
 5.1 Structure of the Intestinal Mucosa 62
 5.2 Proteases 62
 5.3 Antiproteases 62
6. Role of Neutrophil-derived Proteases in Gastrointestinal Inflammation: Mechanistic and Pharmacologic Approaches 63
7. Cationic Proteins 63
8. Summary 64
9. References 64

5. The Vascular Endothelium in Gastrointestinal Inflammation 69
 Peter R. Kvietsy and D. Neil Granger

1. Introduction 69
2. Structure of Vascular Endothelium 70
3. Neutrophil–Endothelial Cell Interactions 70
 3.1 β2 Integrins 71
 3.2 Intercellular Adhesion Molecules 72
 3.3 Selectins 72
 3.4 Shear Stress 74
 3.5 Leucocyte Rolling 74
 3.6 Transendothelial Migration 75
4. Microvascular Exchange of Fluid and Protein 76
 4.1 Net Capillary Fluid Filtration Rate 77
 4.2 Capillary Filtration Coefficient 77
4.3 Capillary Pressure 77
4.4 Interstitial Fluid Pressure 77
4.5 Osmotic Reflection Coefficient 78
4.6 Transcapillary Oncotic Pressure Gradient 78
4.7 Interaction of Capillary and Interstitial Forces: Enhanced Capillary Filtration and Edema Safety Factors 78
5. Ischemia/Reperfusion-induced Inflammation 80
 5.1 Nature of Inflammatory Response 80
 5.2 Mediators of Reperfusion-induced Inflammatory Cell Infiltrate 80
 5.3 Molecular Determinants of Inflammatory Cell Infiltrate 82
5.4 Nature of Reperfusion-induced Microvascular Dysfunction 83
5.5 Mediators of Reperfusion-induced Microvascular Dysfunction 83
6. Ethanol-induced Inflammation 85
 6.1 Nature of Inflammatory Response 85
 6.2 Leucocyte Endothelial Cell Interactions 86
 6.3 Proinflammatory Effects on Ethanol 87
 6.4 Nature of Ethanol-induced Microvascular Dysfunction 88

6. Modulation of Mast Cell Function in the Gastrointestinal Tract 95
 Elyse Y. Bissonnette and A. Dean Befus

 1. Introduction 95
 2. Heterogeneity of Mast Cells 96
 2.1 Mast Cell Heterogeneity in Rodents 96
 2.2 Mast Cell Heterogeneity in Humans 96
 3. Mast Cell Mediators 96
 4. Mast Cell Activation 97
 5. Modulation of Mast Cell Functions 98
 5.1 Effects of Drugs 98

7. Immunopathophysiology of the Gastrointestinal Tract: Role of Platelet Activating Factor 105
 Paul Kubes

 1. Introduction 105
 2. Historical Overview 105
 3. Platelet Activating Factor and Blood Flow 106
 4. Platelet Activating Factor-induced Vasoconstriction: Role of Secondary Mediators 107
 5. Platelet Activating Factor and Polymorphonuclear Leucocytes 109
 6. Microvascular Dysfunction 110
 6.1 Neutrophil-dependent Alterations in Microvascular Integrity 111
 6.2 Neutrophil-independent Effect of Platelet Activating Factor on the Microvasculature 112

8. Cytokines 123
 Fabio Cominelli

 1. Overview 123
 1.1 Interleukin-1 and Interleukin-1 Receptor Antagonist 124
 1.2 Interleukin-2 125
 1.3 Interleukin-3 and Colony Stimulating Factors 126
 1.4 Interleukin-4 126
 1.5 Interleukin-5 126
 1.6 Interleukin-6 126
 1.7 Tumour Necrosis Factor 127
 1.8 Interleukin-7 127
 1.9 Interleukin-8 and Related Chemotactic Peptides 127
 1.10 Interleukin-9 and Interleukin-10 128

 7. Mucosal Dysfunction 113
 8. Platelet Activating Factor and Gastrointestinal Disease 114
 8.1 Ischemia–Reperfusion 114
 8.2 Endotoxemia 116
 8.3 Inflammatory Bowel Disease 117
 9. Sources of Platelet Activating Factor 117
 10. Summary 119
 11. Acknowledgements 119
 12. References 119
CONTENTS

9. Immunopharmacology of Eicosanoids in the Gastrointestinal Tract 137
John L. Wallace

1. Overview 137
1.1 Prostaglandins 138
1.2 Thromboxane 139
1.3 Leukotrienes 139

2. Eicosanoids in the Gastrointestinal Tract: Actions, Sources and Receptors 139
2.1 Prostaglandins 139
2.2 Thromboxane 140
2.3 Leukotrienes 141

3. Role of Eicosanoids in Gastrointestinal Disease 141
3.1 Cytoprotection 141
3.2 Nonsteroidal Anti-inflammatory Drug Gastropathy 142

3.2.1 Overview of Clinical Entity 142
3.2.2 Pathogenesis 143
3.2.3 Clinical Utility of Prostaglandins 144

3.3 Inflammatory Bowel Disease 144
3.3.1 Overview of Clinical Entity 144
3.3.2 Pathogenesis 144
3.3.3 Eicosanoids in Inflammatory Bowel Disease: Animal Studies 146
3.3.4 Eicosanoids in Inflammatory Bowel Disease: Clinical Studies 147
3.4 Shock and Ischemia–Reperfusion Injury 148

4. Conclusions 149
5. References 149

10. Nitric Oxide and the Gastrointestinal Tract 155
Brendan J.R. Whittle

1. Introduction 155
2. Nitric Oxide Synthase 156
2.1 Assay of Nitric Oxide in Gastric Tissue 156
3. Role of Nitric Oxide in Gastrointestinal Motility 158
4. Nitric Oxide and the Gastric Microcirculation 158
4.1 Basal Blood Flow 158
4.2 Functional Hyperaemia 159
5. Role of Nitric Oxide in Modulating Gastric Integrity 159
6. Nitric Oxide and the Intestinal Vasculature 160
6.1 Intestinal Blood Flow 160
6.2 Portal Hypertension 160
7. Nitric Oxide and Intestinal Vascular Integrity 160
8. Cellular Interactions in Vascular Damage 161
9. Role of Nitric Oxide in Immunologically Activated Processes 162
10. Further Implications of the Nitric Oxide 162
11. References 163

11. Glucocorticoids and Gastrointestinal Inflammation 169
Luca Parente and Kenneth G. Mugridge

1. Introduction 169
2. Glucocorticoid Use and Association with Gastrointestinal Disease: Clinical and Experimental Evidence 170
3.1 Effects on Enzymes Involved in the Metabolism of Arachidonic Acid 170
3.1.1 Phospholipase A2 170
3.1.2 Cyclooxygenase and Lipoxygenase 171
3.2 Relationship Between the Effect of Glucocorticoids on Eicosanoids and their Action on Gastrointestinal Inflammation 171
3.3 Effect of Glucocorticoids on Leucocyte Migration and Function 173
3.4 Relationship Between the Effect of Glucocorticoids on Neutrophils and their Action on Gastrointestinal Inflammation 174
3.5 Do Glucocorticoids Exert their Beneficial Effects in IBD through Inhibition of Cytokine Production? 175
4. Conclusions 177
5. References 177

Glossary 185
Key to Illustrations 189
Index 195