CONTENTS

Preface

Part I Introduction
1 The arrangement of the information in this volume 1
2 General introduction 2
 Adverse reactions 2
 Lack of efficacy 2
 Variation: the raw material of genetics 3
 Historical perspective 3
3 Classification of pharmacogenetic phenomena 6
 Introduction 6
 Discovery of single gene effects 6
 The concept of polymorphism 7
 Polygenic effects 7
 Inter-ethnic variability 8

Part II Cytochrome P450 based phenomena
4 Cytochromes P450 – general features 9
 Introduction 9
 Molecular structure 10
 A protein in evolution 10
 Function 11
 Categories in human cytochromes P450 13
 Inducibility 16
 Chromosomal localization 17
5 Arylhydrocarbon hydroxylase (cytochrome P450 1A1 and 1A2) 19
 Introduction 19
 The Ah locus in the mouse 19
 A non-invasive test 19
 The responsible cytochromes P450 20
 The Ah receptor 20
 The relationship of the Ah gene to the cyp 1a1 gene 20
 The effects of Ah responsiveness in mice 21
 Studies of arylhydrocarbon hydroxylase in humans 21
Human lymphocyte preparations 21
Human peripheral blood monocytes 22
Bronchogenic carcinoma 23
Leukaemia and solid tumours 27
Smoking appears to protect against aflatoxin hepatoma 27
Earlier menopause in smoking women 27
Arylhydrocarbon hydroxylase activity and drug metabolism 27
The molecular genetics of cytochromes P450 1A1 and 1A2 in man 30
Conclusions 31

6 The mephenytoin hydroxylation polymorphism (cytochrome P450 2C18) 35
 The discovery of the polymorphism 35
 Genetic nature of the polymorphism 36
 Comparisons of various populations 37
 Metabolic differences between phenotypes 40
 Enzymic basis of the polymorphism 42
 Chemical inhibition studies 42
 Studies on molecular structure and gene localization 44
 Other drugs metabolized polymorphically by the mephenytoin
 polymorphism 45
 Drugs which are not influenced by the mephenytoin polymorphism 48
 Induction 48
 Phenotyping procedures 48
 Direct clinical effects 49
 Association of phenotypes with spontaneous disorders 49
 Similar polymorphism in non-human primate 50

7 The debrisoquine/sparteine polymorphism (cytochrome P450 2D6) 54
 The metabolism of debrisoquine and the definition of phenotypes 54
 The sparteine polymorphism 55
 Family studies of debrisoquine metabolism 56
 Family studies of other drugs 57
 Drugs whose metabolism is controlled by the alleles controlling the
 debrisoquine and sparteine hydroxylation polymorphism 57
 Phenotyping tests 59
 Drugs whose metabolism is not controlled by the debrisoquine/sparteine
 polymorphism 61
 Interactions in vivo between drugs known to be substrates for
 debrisoquine/sparteine polymorphic oxidation 61
 Other interactions 62
 The effects of inducer and inhibitor compounds in vivo on drug
 metabolism mediated by the debrisoquine/sparteine polymorphism 64
 Enzymological studies 64
 In vitro inhibition studies of the cytochrome P450 responsible for the
 debrisoquine/sparteine polymorphism 65
 Molecular genetics 69
 Chromosomal localization 73
 Inter-ethnic variability 74
 Clinical consequences 78
 Associations between debrisoquine/sparteine phenotypes and spontaneous
 disorders 82
 Conclusion 88
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 The cytochrome P450 3A subfamily</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Nifedipine</td>
</tr>
<tr>
<td>The frequency distributions of pharmacokinetic parameters</td>
</tr>
<tr>
<td>Additional information</td>
</tr>
<tr>
<td>Biochemical aspects</td>
</tr>
<tr>
<td>Molecular genetics</td>
</tr>
<tr>
<td>Gene mapping</td>
</tr>
<tr>
<td>Inducibility of cytochrome P450 3A4</td>
</tr>
<tr>
<td>Likely substrates for cytochrome P450 3A4 as suggested by immuno-inhibition studies</td>
</tr>
<tr>
<td>Inter-subject variability</td>
</tr>
<tr>
<td>Inter-ethnic variability</td>
</tr>
<tr>
<td>Cyclosporine</td>
</tr>
<tr>
<td>Lidocaine</td>
</tr>
<tr>
<td>Tamoxifen</td>
</tr>
<tr>
<td>Conclusion</td>
</tr>
<tr>
<td>9 Tolbutamide</td>
</tr>
<tr>
<td>Introduction, and a genetic hypothesis</td>
</tr>
<tr>
<td>In vivo assessments of interactions of other drugs with tolbutamide</td>
</tr>
<tr>
<td>metabolism</td>
</tr>
<tr>
<td>In vitro observations using human liver preparations</td>
</tr>
<tr>
<td>Molecular genetics</td>
</tr>
<tr>
<td>10 Phenytoin</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Interaction between diphenylhydantoin and the polymorphic acetylation of isoniazid</td>
</tr>
<tr>
<td>Genetic control of phenytoin metabolism</td>
</tr>
<tr>
<td>Correlation of diphenylhydantoin hydroxylation with the hydroxylation of other compounds</td>
</tr>
<tr>
<td>Poor parahydroxylation of phenytoin and Parkinson’s disease</td>
</tr>
<tr>
<td>Idiosyncratic adverse reactions and epoxide hydrolases</td>
</tr>
<tr>
<td>Inter-ethnic variability in phenytoin metabolism</td>
</tr>
<tr>
<td>11 Some other drugs of special interest</td>
</tr>
<tr>
<td>Warfarin</td>
</tr>
<tr>
<td>Metronidazole</td>
</tr>
<tr>
<td>Phenacetin</td>
</tr>
<tr>
<td>12 Cytochrome P450 reductase</td>
</tr>
<tr>
<td>13 General conclusions</td>
</tr>
<tr>
<td>Part III Cholinesterase</td>
</tr>
<tr>
<td>14 Cholinesterase</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Mechanism of action of succinylcholine</td>
</tr>
<tr>
<td>Assessment of the degree of neuromuscular block</td>
</tr>
<tr>
<td>Early discoveries – multiple alleles</td>
</tr>
<tr>
<td>New alleles</td>
</tr>
<tr>
<td>Heterogeneity of the ‘silent’ phenotype</td>
</tr>
<tr>
<td>The succinylcholine apnoea-prone person of ‘normal’ phenotype</td>
</tr>
<tr>
<td>CONTENTS</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Electrophoretically determined polymorphisms</td>
</tr>
<tr>
<td>High activity cholinesterase variants</td>
</tr>
<tr>
<td>Genetic linkage and chromosomal localization</td>
</tr>
<tr>
<td>Techniques for assessing cholinesterase activity and phenotypes including the use of automated methods</td>
</tr>
<tr>
<td>Molecular biology of cholinesterase</td>
</tr>
<tr>
<td>Miscellaneous clinical topics</td>
</tr>
<tr>
<td>The use of succinylcholine as an in vitro test substance for cholinesterase assessment</td>
</tr>
<tr>
<td>Cholinesterase enzyme treatment to prevent apnoea caused by succinylcholine</td>
</tr>
<tr>
<td>The relationship between cholinesterase and plasma lipoproteins</td>
</tr>
<tr>
<td>Inter-ethnic variability in the frequencies of the alleles controlling cholinesterase variants</td>
</tr>
<tr>
<td>Appendix</td>
</tr>
</tbody>
</table>

Part IV Alcohol and alcoholism

15 Alcohol and alcoholism

The objectives of this chapter	177
Historical background	177
A pharmacogenetic approach	177
Definitions	178
Alcohol-related problems are influenced by heredity and environment	178
Familial studies	179
Twin studies	179
The attributes of persons genetically susceptible to alcoholism: ‘at risk' individuals	180
The psychological attributes of ‘at risk' individuals	180
Physiological markers	181
Alcohol and the electroencephalogram	181
Biochemical markers	182
Genetic control of a brain mechanism which responds to alcohol – a first attempt	183
Genetic control of the metabolism and effects of alcohol	183
Twin studies of the metabolism of alcohol	183
Inter-ethnic variability in the effects of alcohol	183
Inter-ethnic comparisons of the rates of alcohol metabolism	185
Alcohol dehydrogenase	186
The metabolism of alcohol in man	186
A variant form of alcohol dehydrogenase	186
A complex genetic polymorphism	186
Molecular genetics of ADH	189
Chromosomal localization	189
Gene organization	189
Restriction fragment length polymorphisms	190
ADH genotyping using DNA from leucocytes	190
Application and speculation	191
Aldehyde dehydrogenase	192
Different types of acetaldehyde dehydrogenase	192
Cytosolic and mitochondrial liver aldehyde dehydrogenase	194
A technical advance in studying the acetaldehyde dehydrogenase phenotype 194
Ethnic distribution 194
Molecular genetics 195
Chromosomal localization 196
The pharmacological effects of alcohol in relation to aldehyde dehydrogenase type 196
Alcohol consumption in relation to the Japanese ALDH2 polymorphism 198
An association of an acetaldehyde dehydrogenase phenotype with alcoholism 198
Some further considerations concerning ALDH deficiency 199
Two new associations of phenotypes within polymorphisms with alcoholism 200
Genetic predisposition to the sequelae of alcoholism 200
The effects of alcohol on chromosomes and chromatids 202
The fetal alcohol syndrome 202
A resumé and a perspective 203

Part V N-Acetyltransferase 211
16 N-Acetyltransferase 211
Summary 211
Introduction and initial discovery of the polymorphism 211
Genetic Investigations 212
Drugs other than isoniazid which are polymorphically acetylated 214
Techniques for determining the acetylator phenotype 215
Isoniazid tests 218
Sulphamethazine tests 218
Sulphapyridine 220
Other phenotyping methods 222
The search for a genotyping test 222
Factors influencing acetylator phenotyping tests 222
The effect of age on the N-acetylation process and its polymorphism 226
Height and weight 227
The metabolic basis of the polymorphism 227
Further studies on the molecular nature of the enzyme polymorphism 228
Molecular biology 230
Associations of clinical responses to drugs with acetylator phenotypes 232
Isoniazid 232
Hydralazine 241
Dihydralazine and endralazine 244
Sulphapyridine – a metabolite of salicylazosulphapyridine 244
Nitrazepam 247
Aminogluthethimide 247
Procainamide 249
Dapsone 250
Caffeine 251
Phenelzine 253
Miscellaneous observations 254
When should one do an acetylator phenotyping test in clinical practice? 255
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The global distribution of allele frequency</td>
<td>255</td>
</tr>
<tr>
<td>Associations between acetylator phenotypes and spontaneous disorders</td>
<td>258</td>
</tr>
<tr>
<td>Bladder cancer</td>
<td>261</td>
</tr>
<tr>
<td>Occupational exposure to polymorphically acetylated compounds</td>
<td>266</td>
</tr>
<tr>
<td>Colorectal carcinoma</td>
<td>267</td>
</tr>
<tr>
<td>Carcinoma of the larynx</td>
<td>269</td>
</tr>
<tr>
<td>Bronchial carcinoma</td>
<td>269</td>
</tr>
<tr>
<td>Cancer of the breast</td>
<td>269</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>269</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>273</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>273</td>
</tr>
<tr>
<td>Diabetes</td>
<td>276</td>
</tr>
<tr>
<td>Miscellaneous disorders</td>
<td>277</td>
</tr>
<tr>
<td>Discussion</td>
<td>285</td>
</tr>
<tr>
<td>Conclusions</td>
<td>285</td>
</tr>
</tbody>
</table>

Part VI

Miscellaneous Phase II reactions showing genetic variability in drug metabolism

17 The glucosidation of amobarbital
 - Introduction | 303 |
 - A new approach | 303 |
 - Inter-ethnic studies | 304 |
 - The possibility of in *in vitro* studies of glucosidation | 304 |
 - Stereoisomer formation | 304 |
 - Glucose conjugation of other drugs | 305 |
 - Epilogue | 305 |

18 Glucuronosyltransferases
 - Introduction | 306 |
 - Relationship of drug glucuronidation to spontaneously occurring genetic disorders | 307 |
 - Similarities to the cytochrome P450 system | 310 |
 - Recent advances in the molecular biology of UDP glucuronosyltransferase enzymes | 311 |
 - The search for genetic polymorphisms of drug glucuronidation in man | 313 |
 - Differential induction of drug glucuronidation | 314 |
 - Possible future developments | 314 |

19 Glutathione-S-transferase
 - Introduction | 317 |
 - Different classes of glutathione-S-transferases | 318 |
 - Genetic polymorphisms | 319 |
 - Gene structure | 321 |
 - Gene localization | 322 |
 - Tissue distribution | 322 |
 - Induction and inhibition | 323 |
 - Inter-ethnic distribution | 323 |
 - The glutathione-S-transferase mu polymorphism and spontaneous disorders | 323 |
 - Glutathione-S-transferases and drug effects | 325 |
 - Relevance of GST to occupational medicine | 326 |

20 Methylation reactions
 - Introduction | 330 |
Thiopurine methyltransferase
 Assay and genetics
 Inter-ethnic variability
 TPMT in other cells and tissues
 In vitro substrates and inhibitors
 Clinical applications
Thiol methyltransferase
 Introduction
 Genetics
 Drugs metabolized
 Relation to spontaneous disease
Catechol-O-methyltransferase
 Genetics
 Linkage and gene localization
 Identity of genetic control in erythrocytes and internal organs
 Clinical applications
Histamine N-methyltransferase
Phenolmethyltransferase
Conclusions

21 Paraoxonase
 Introduction
 Genetic studies
 Advances in phenotyping and genotyping techniques
 Inter-ethnic variability
 Further genetic analyses
 Linkage of the paraoxonase locus with the cystic fibrosis locus
 Enzymology
 Relationship of paraoxonase to myocardial infarction and association
 with HDL cholesterol
 Molecular genetics

22 Sulphotransferases
 Introduction
 Correlation of the phenol sulphotransferase activity of platelets with that
 of other cells and tissues
 Genetic studies
 Thermostable (P-form) human phenol sulphotransferase cloned
 Inter-ethnic comparisons
 Correlations of variability in platelet PST with drug metabolism
 Relationship to a spontaneous disorder
 N-sulphotransferase

23 Sulphoxidation deficiency
 Introduction
 Genetic aspects
 Relationship to established polymorphisms
 Site of sulphoxidation
 A curiosity – black speckled dolls
 Clinical studies
 The story takes a new turn
 Other drugs which are sulphoxidized

24 Halothane hepatitis and other topics
Part VII Glucose-6-phosphate dehydrogenase deficiency

25 Glucose-6-phosphate dehydrogenase deficiency

Introduction
Haemolytic anaemia after primaquine ingestion
Cross-transfusion experiments
Enzymic basis
Genetic studies
Variant forms of G6PD
Analysis of the protein structure
Molecular genetics
An evolutionary perspective
Genetic linkage
Gene localization
G6PD in cells and tissues other than erythrocytes
X-inactivation in the female
The clinical effects of G6PD variants
Malaria
Favism
Neonatal jaundice
Hereditary non-spherocytic haemolytic anaemia
Chemicals causing haemolysis in G6PD deficient subjects
Bacterial and viral infections
Methods of detecting G6PD deficiency
Miscellaneous observations
(a) Glucose tolerance
(b) Hypertension, pulse rate and serum creatinine
(c) Cancer
(d) Clonal origin of tumours
(e) Oestrogen receptors in breast cancer
(f) Thyrototoxicosis and erythrocytic G6PD activity
(g) Interactions between G6PD deficiency and sickle haemoglobin
(h) Cataracts
(i) Apparent severe deficiency of leucocyte glucose-6-phosphate dehydrogenase
Serum lipids
Predictions of haemolysis in vivo from laboratory data
Conclusion

Part VIII The hepatic porphyrias

26 The hepatic porphyrias

Introduction
Haem synthesis
Classification of porphyria disorders
The acute porphyrias
Contents

The mechanism of production of the acute porphyrias 428
The therapy of the acute porphyrias 430
Porphobilinogen synthase deficiency 433
 Enzyme polymorphisms 433
 A type of acute porphyria 433
 Molecular biology 434
 Lead toxicity 435
Acute intermittent porphyria 435
 Clinical features 435
 Diagnosis and biochemical investigations 436
 Identification of the enzymic defect 436
 Molecular genetics 438
 Homozygous AIP 439
Hereditary coproporphyria 439
Porphyria variegata 443
 Clinical features 443
 Biochemical abnormalities 443
 Genetics 445
 Homozygous porphyria variegata 445
Porphyria cutanea tarda 445
 Metabolic abnormalities 446
 Enzymological and genetic studies 446
 Hepato-erythropoietic porphyria 447
 Enzyme–environment interaction 448
 Molecular genetics 448
 Management 449
 Dual porphyria and Chester porphyria 449
Pseudoporphyria 451
Conclusions 452

Part IX Malignant hyperthermia 459
27 Malignant hyperthermia 459
 Clinical description 459
 Incidence 460
 Ethnic distribution 460
 Preventing MH 460
 When MH occurs 460
 The MH phenotype – a possible occupational hazard 461
 Tests which identify the MH-susceptible phenotype 462
 The muscle contracture test 462
 Drugs and the in vitro muscle contracture test 465
 Creatine phosphokinase 466
 Prediction of MH susceptibility by means of clinical signs 466
 Muscle abnormalities to be found in the MHS phenotype 466
 Other predictive tests 467
 Counselling and information 467
 Reactions of the MH type occurring in other disorders 468
 Central core disease 468
 Duchenne muscular dystrophy 468
 The King–Denborough syndrome 468
Myoadenylate deaminase deficiency 469
Myotonia 469
Other conditions 469
Possible associations between MH and other conditions 469
 Sudden infant death syndrome (cot death) 469
 Neuroleptic malignant syndrome 470
Aberrant physiology 470
 Normal muscle contraction 470
 The MH muscle 473
 Malignant hyperthermia in pigs 474
Genetic aspects 474
 Linkage 476
A single point mutation 477
Appendixes 480

Part X Miscellaneous systems showing genetic variability in response to drugs

28 Chlorpropamide–alcohol flushing 489
 Introduction 489
 Differentiation from flushing on ethanol alone 489
 Inheritance 489
 Associations with diabetes 489
 Associations with the complications of diabetes 492
 Association with acetylator phenotype 492
 The possibility of an in vitro test 492
 Circulating metenkephalin in CPAF 492
 Prostaglandin synthetase inhibitors 493
 The phenotyping test 493
 Conclusion 497

29 Glucocorticosteroids and intraocular pressure 499
 An adverse reaction 499
 Population surveys 499
 Family studies 500
 Further genetic studies – conflicting evidence 501
 The contribution of the \(P^L \) and \(P^H \) alleles to the control of the basal pressure of the healthy eye 501
 Predisposition to primary glaucoma detected by ocular corticosteroid test? 504
 Secondary glaucoma 505
 Two tests influenced by allelic genes \(P^L \) and \(P^H \) 505
 (a) Glucose tolerance 505
 (b) The plasma cortisol suppression test 505
 Conclusion 505

30 Unstable haemoglobins 507
 Clinical observations 507
 Laboratory investigations 507
 Genetic studies 508
 The properties of haemoglobin Zürich 508
 A second haemoglobin Zürich family 509
 Phenazopyridine and carbon monoxide 509
 The molecular basis of the interaction of sulphonamides with haemoglobin Zürich 509
CONTENTS

Other unstable haemoglobins affected by sulphonamides 510
Conclusions 510

31 Human lymphocyte antigens and adverse reactions to drugs 512
Introduction 512
Reactions to the treatment of rheumatoid arthritis 512
Systemic lupus erythematosus-like syndrome (pseudolupus) 515
Mechanism 516

32 The polymorphism for tasting phenylthiocarbamide (PTC syn phenylthiourea) 518
Prologue 518
Discovery 518
The technique of detecting the PTC taste polymorphism 518
Genetics 522
Linkage 525
Factors influencing the PTC taste-titre 525
The mechanism which is responsible for the taste-testing polymorphism 526
The physico-chemical investigation of taste thresholds 527
Effect of thyroxine precursors on taste-testing 527
Neurological considerations 527
Substances other than PTC which detect the tasting polymorphism 528
Another similar taste-testing polymorphism 533
Inter-ethnic variability 534
Associations of PTC phenotypes with spontaneous disorders 534
Thyroid disorders 534
Food dislikes and preferences 539
Other conditions 541
Epilogue 543

33 Hereditary anticoagulant resistance 547
Clinical experience 547
Vitamin K 549
Hereditary warfarin resistance in rats 549
Relevance of the work in rats to human hereditary warfarin resistance 551
Variation in the response to oral anticoagulants in non-extraordinary subjects 552

34 NADH-cytochrome b5 reductase 555
The nature of methaemoglobin 555
The formation of methaemoglobin 555
Physiologic mechanisms for reduction of methaemoglobin 555
Origin and development of erythrocytic NADH-cytochrome b5 reductase 556
Genetic variation of NADH-cytochrome b5 reductase 557
Different clinical types of congenital methaemoglobinaemia 558
Structures and molecular genetics of NADH-cytochrome b5 reductase and cytochrome b5 559
Chromosomal localization 559
Acquired methaemoglobinaemia 559
Gene frequency of NADH-cytochrome b5 deficiency in Caucasians 561
Methaemoglobinaemia due to haemoglobin variants 562
Diagnosis 562
Treatment 562

35 Catalase 568
A clinical observation 568
Oral gangrene (Takahara's disease) 568
Catalase in cells and tissues other than erythrocytes 569
Genetics of acatalasia 569
Chromosomal localization of the catalase gene 570
Molecular genetics 570
Structure of catalase 571
Function of catalase 571
Genetic variants of acatalasia 571
Ethnic distribution of acatalasia 572
A speculation 572
36 Antibiotic-induced deafness, chloramphenicol toxicity and other topics 574
Antibiotic-induced deafness 574
Fluorouracil and familial pyridinaemia 574
Chloramphenicol-induced marrow depression 577
Nail pigmentation following cancer chemotherapy 577
Hereditary predisposition in drug-induced Parkinsonism 578
Minocyclin-induced potassium loss from erythrocytes 578
Tumour resistance to multiple chemotherapeutic agents 578
Lithium 579
Black thyroid associated with minocycline therapy 580
A green man after indomethacin 580
Drug binding to plasma proteins 580
Chloroquine-induced pruritis 581

Part XI Polygenic effects in pharmacogenetics
37 Polygenic effects in pharmacogenetics 585
Introduction 585
Nortriptyline 586
Phenylbutazone 586
Dicumarol 588
Antipyrine 588
Theophylline 589
Conclusion 590

Part XII Common themes
38 Common themes 593
Introduction 593
Occupational medicine 593
Toxicological implications 595
Cancer 596
Inter-ethnic variability 598
Single gene (major gene) phenomena 598
Quantitative, multifactorial or polygenic systems 600
A public health perspective 600
Molecular modelling 605
Implications of pharmacogenetic polymorphisms for drug development and regulation 607
Pharmacogenetic approaches to the study of the aetiology of common disorders 609
CONTENTS

Part XIII Conclusions
39 Conclusions 615

Part XIV Appendixes
Appendix I Computing the degree of dominance 619
Appendix II Exponential decay 621
Appendix III The disentanglement of overlapping frequency distribution curves 622
Appendix IV Chromosomal locations of genes 625
Appendix V General bibliography 627

Index 629