MODERN ECOLOGY

Basic and Applied Aspects

Edited by

G. Esser
International Institute for Applied Systems Analysis (IIASA),
Schlossplatz 1, A-2361 Laxenburg, Austria

and

D. Overdieck
Institut für Ökologie der Technischen Universität,
Königin-Luise-Strasse 22, D-1000 Berlin 33, Germany

Elsevier
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>V</td>
</tr>
<tr>
<td>Editorial advisors</td>
<td>IX</td>
</tr>
<tr>
<td>List of contributors</td>
<td>XI</td>
</tr>
<tr>
<td>I Morphology, stand structure, and competition</td>
<td>1</td>
</tr>
<tr>
<td>1 Morphology in modern ecological research</td>
<td>3</td>
</tr>
<tr>
<td>by W. Eber</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Models of plant construction</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Diversity of individuals within populations</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Application of morphological aspects in the study of primary</td>
<td>6</td>
</tr>
<tr>
<td>production and related processes</td>
<td></td>
</tr>
<tr>
<td>1.5 The analysis of plant architecture</td>
<td>8</td>
</tr>
<tr>
<td>1.6 Resource allocation</td>
<td>11</td>
</tr>
<tr>
<td>1.7 The growth form, clonal growth and lateral spread</td>
<td>13</td>
</tr>
<tr>
<td>2 Vegetation structure, phytomass and phenology of the dry thorn</td>
<td>21</td>
</tr>
<tr>
<td>scrub of Curaçao, West Indies</td>
<td></td>
</tr>
<tr>
<td>by M. J. A. Werger, C. de Bok and B. Oranje</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Area and methods</td>
<td>22</td>
</tr>
<tr>
<td>2.2.1 Area and floristic composition</td>
<td>22</td>
</tr>
<tr>
<td>2.2.2 Biomass and Leaf Area</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3 Phenology</td>
<td>24</td>
</tr>
<tr>
<td>2.3 Results</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1 Floristic composition</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2 Biomass, structure and leaf area</td>
<td>25</td>
</tr>
<tr>
<td>2.3.3 Phenology</td>
<td>28</td>
</tr>
</tbody>
</table>

XVII
2.4 Discussion .. 32

3 Structure and phytomass production of a pioneer community
by M. JOCHIMSEN and D. JANZEN 39
3.1 Introduction ... 39
3.2 Research area and methods 40
3.3 Phytomass .. 41
3.4 Number of individuals 45
3.5 Species numbers ... 49
3.6 The five most productive species 51
3.7 Conclusion .. 56

4 Survival and growth beneath and near parents: The case of Myr-}

cianthes fragrans (Myrtaceae)
by D. F. WHIGHAM and E. CABRERA CANO 61
4.1 Introduction ... 61
4.2 Study site .. 62
4.3 Methods ... 63
4.4 Results .. 66
4.5 Discussion .. 71

5 Colonizing success in plants: Genetic variation and phenotypic
plasticity in life history traits in Capsella bursa-pastoris
by H. HURKA and B. NEUFFER 77
5.1 Introduction ... 77
5.2 History of Capsella bursa-pastoris 78
5.3 Breeding system of Capsella bursa-pastoris 79
5.4 Reproductive capacity 80
5.4.1 Number of seeds per fruit 80
5.4.2 Total seed output 82
5.5 Founding of populations in new habitats 83
5.5.1 Seed sizes, seed polymorphism 83
5.5.2 Establishment near to the previously seeded range 85
5.5.3 Soil seed bank .. 85
5.5.4 Long distance seed dispersal 87
5.6 Germination behavior 88

6 Niches of longevity and stress
by F. KLÖTZLI ... 97
6.1 Introduction ... 97
6.2 Circumstances of longevity 99
6.2.1 Site conditions and ecophysiological reactions of Bristlecone
pine .. 99
6.2.2 Comparable niches in Eurasia 101
6.2.3 Junipers of the Karakorum ranges 102
6.3 Conclusions ... 104
6.4 Annex: Hunza Valley area ... 107
 6.4.1 Physiography .. 107
 6.4.2 Climate ... 108
 6.4.3 Soil .. 110

II Mass and water balances at stand level 111

7 Plasticity of the photosynthetic production of Galium aparine L.
by W. L. Kutsch and L. Kappen 113
 7.1 Introduction ... 113
 7.2 Material .. 114
 7.3 Methods ... 115
 7.4 Mathematical Modelling ... 116
 7.4.1 Photosynthetic light response and light acclimation 116
 7.4.2 Temperature dependence of dark respiration and photosyn-
 thesis .. 117
 7.5 Results .. 118
 7.5.1 Seasonal course of the developmental stages 118
 7.5.2 Seasonal courses of the CO₂ exchange parameters 119
 7.5.3 Adaptation of the plants to the light conditions 121
 7.5.4 Parameters of the mathematical modelling and leaf parameters122
 7.6 Conclusions ... 122

8 Diversity of photosynthetic responses in the mesic and arid Medi-
terranean-type climate regions of southern Africa
by M. C. Rutherford .. 133
 8.1 Introduction ... 133
 8.2 Photosynthetic pathways .. 135
 8.3 Responses to photosynthetic photon flux density 136
 8.4 Response to temperature ... 139
 8.5 Responses to water .. 141
 8.6 Responses to leaf to air water vapour pressure deficits 145
 8.7 Nutrient considerations ... 146
 8.8 Photosynthetic capacity .. 149
 8.9 Leaf and plant age effects 150
 8.10 Conclusions ... 151

9 The combination of measurements and mathematical modelling
for assessing canopy structure effects
by U. Tappeiner and A. Cernusca 161
 9.1 Introduction ... 161
9.2 Materials and methods ... 163
 9.2.1 Sites investigated ... 163
 9.2.2 Experimental ecological methods ... 165

9.3 Model designing ... 169
 9.3.1 Canopy structure and light climate submodel 169
 9.3.2 Single leaf photosynthesis submodel 172
 9.3.3 Canopy photosynthesis model ... 172

9.4 Selection and validation of the appropriate model 173
 9.4.1 Validation of the radiation model .. 174
 9.4.2 Validation of the canopy photosynthesis model 177

9.5 Application of the presented models ... 180
 9.5.1 Investigation of the dynamic changes in stand structure, light climate, and photosynthesis, following abandonment of an alpine pasture .. 180
 9.5.2 Typification of structurally different plant stands in the Central Caucasus .. 182

9.6 Conclusion .. 187

10 The water balance of deciduous forests: methods and models
by B. SAUGIER and J.-Y. PONTAILLER .. 195

10.1 Introduction .. 195

10.2 Soil Water Balance .. 196
 10.2.1 Field capacity ... 198
 10.2.2 Wilting point .. 198

10.3 Rainfall distribution pattern ... 200
 10.3.1 Throughfall, stemflow and interception loss 200
 10.3.2 Interception by tree litter ... 201

10.4 Evapotranspiration ... 201
 10.4.1 Soil water balance method ... 201
 10.4.2 Energy balance (Bowen ratio) method 202
 10.4.3 Eddy correlation method .. 202

10.5 Sapflow ... 203
 10.5.1 Sapflow measurement ... 203

10.6 Models of forest water balance .. 205
 10.6.1 Evaporation of intercepted water 206
 10.6.2 Canopy resistance r_c ... 207
 10.6.3 Soil moisture and transpiration ... 209

10.7 Conclusion .. 209

11 Combination effects of water and salt stress on growth, hydration and pigment composition in wheat (*Triticum aestivum* L.): A mathematical modelling approach
by K. H. KREEB and T. CHEN .. 215
11.1 Introduction .. 215
11.2 Materials and Methods 217
 11.2.1 Plants, experimental layout, and ecophysiological methods .. 217
 11.2.2 Statistical and regression analysis 217
11.3 Results and Discussion 222
 11.3.1 The combination effect on plant height 222
 11.3.2 The combination effect on the potential osmotic pressure (π^*) 222
 11.3.3 The combination effect on chlorophyll content 223
11.4 Conclusion .. 227

12 Ecosystem research on grassland in the Austrian Alps and in the Central Caucasus
by A. CERNUSCA .. 233
12.1 Introduction 233
12.2 Scope of the studies and methods 234
12.3 Sites investigated 238
12.4 Structure and function of alpine grassland ecosystems .. 241
 12.4.1 Altitudinal variation of water budget 241
 12.4.2 Altitudinal variation of canopy structure, energy balance and microclimate .. 242
 12.4.3 Altitudinal variation of phytomass, energy content and fodder value .. 250
 12.4.4 Altitudinal variation of soil-microbiological processes 252
 12.4.5 The carbon budget of the alpine sedge mats 253
12.5 The effects of anthropogenic measures on alpine ecosystems .. 259
 12.5.1 The consequences of grazing on the alpine grassland 261
 12.5.2 The consequences of the abandonment of the alpine pastures 263
 12.5.3 The effects of skiing facilities on the water balance of the alpine grassland ecosystems 264
 12.5.4 Susceptibility of alpine ecosystems to disruption, as seen in the case of hiking trails 264

III Minerals and vegetation–soils interactions 273

13 Multi-element analysis in plant material
by B. MARKERT .. 275
13.1 Introduction 275
13.2 Establishment of baseline values (background concentrations) 279
13.3 Analytical chemistry as an interdisciplinary approach 284
13.4 Conclusions 288
14 Significance of nutrient relations and symbiosis for the competitive interaction between grasses and legumes in tropical savannas
by E. Medina and B. Bilbao
14.1 Introduction ... 295
14.2 Soil characteristics and vegetation composition 296
14.3 Biomass distribution and storage of nutrient and mobile carbohydrates 302
 14.3.1 Nutrient content of leaves and roots 303
 14.3.2 Nutrient limitation of productivity of native grass species 305
 14.3.3 Biological interactions improving nutrient availability 306
14.4 Concluding remarks 313

15 Correlations between the microbial activity, and water, air, temperature and nutrient status of different soils under different land use
by H.-P. Blume, L. Beyer and F. Friedrich
15.1 Introduction ... 321
15.2 Sites and soils ... 322
15.3 Methods .. 325
15.4 Soil dynamics ... 327
 15.4.1 Loamy Luvisols under different land use 327
 15.4.2 Sandy Podzols under different land use (Fig. 15.2) 332
 15.4.3 Gleysols under forest (Fig. 15.3) 336
 15.4.4 Histosols under natural vegetation (Fig. 15.4) 338
15.5 Comparative discussion 340

IV Disturbances and management of semi–natural and agricultural systems 347

16 Fire, dry heat and germination of savanna grasses in Botswana
by W. H. O. Ernst
16.1 Introduction ... 349
16.2 Material and Methods 350
16.3 Results .. 351
 16.3.1 Effect of field fire in the savanna 351
 16.3.2 Effect of dry heat 352
16.4 Discussion ... 356

17 Does intermediate disturbance increase species richness within deciduous forest understory?
by R. J. Reader, K. C. Taylor and D. W. Larson
17.1 Introduction ... 363
17.2 Expected effects of intermediate disturbance on deciduous forest understory 365
17.3 Selective tree harvesting effects on deciduous forest understory . . . 366
17.4 Trampling effects on deciduous forest understory 368
17.5 Does forest species richness increase following intermediate distur-
bance? .. 370
17.6 Conclusions .. 371

18 Response of a Bromus erectus grassland (Mesobromion) to abandon-
ment and different cutting regimes
by H. DIERSCHKE and M. ENGELS .. 375
18.1 Introduction .. 375
18.2 Research area and methods ... 376
18.3 Results ... 377
 18.3.1 Comparison of species combination in one year 377
 18.3.2 Changes of species combination over several years 379
 18.3.3 Differences of above-ground phytomass production 382
 18.3.4 Response of Bromus erectus to different cutting regimes .. 385
18.4 Discussion and conclusions .. 386
 18.4.1 Secondary succession of abandoned calcareous grassland .. 386
 18.4.2 Own results of secondary succession in comparison with the
 literature ... 387
 18.4.3 Regeneration of Mesobromion communities 390
 18.4.4 Vitality and competitiveness of Bromus erectus 391

19 Phytosociology in vineyards — results, problems, tasks
by O. WILMANNS and A. BOGENRIEDER 399
19.1 Introduction .. 399
 19.1.1 Framework ... 399
 19.1.2 A short overview of previously described vineyard wild-herb
 communities ... 400
19.2 Case study “Markgräfler Hügelland” ... 401
 19.2.1 Geographical situation .. 401
 19.2.2 Available material, methods .. 403
 19.2.3 Overview of the community types in the “Markgräfler Land” 411
 19.2.4 The development of the vineyard undergrowth in the “Ge-
 markung Niederegggenen” .. 422
 19.2.5 Investigations on the problem of nitrogen and tilth 426
19.3 Discussion and prospects ... 428
 19.3.1 Facets of Plant Sociology .. 428
 19.3.2 Symmorphology and symphenology 431
 19.3.3 Ecology ... 432
 19.3.4 Temporal change: syndynamics (succession theory) and syn-
 evolution ... 434
 19.3.5 Sigmasociology: vegetation complexes 435
19.3.6 Biocoenology ... 437

20 The dissipation of energy through soil invertebrates in wheat field and meadow
by L. RYSZKOWSKI ... 443
20.1 Introduction and area description 443
20.2 Primary production .. 444
 20.2.1 Methods ... 444
 20.2.2 Values of annual primary production and inputs of plant biomass for energy requirements of heterotrophs 445
20.3 Total community of soil invertebrates 447
 20.3.1 Methods of sampling and evaluating energy flow 447
 20.3.2 Biomass structure and energy cost of soil maintenance 448
20.4 Dissipation of energy by soil–animals 451

V Eutrophication and pollution in terrestrial systems 457

21 Lead tolerance of annuals at roadsides
by U. HELLMUTH and W. SCHMIDT 459
21.1 Introduction ... 459
21.2 Materials and methods ... 460
21.3 Results ... 461
 21.3.1 Lead concentration in the soil 461
 21.3.2 Plant growth and lead content 462
21.4 Discussion ... 465

22 Environmental mutagenesis: mutational load in natural populations of Eisenia fetida?
by W. NAU and W. KÖHLER .. 473
22.1 Introduction ... 473
22.2 Material and Methods .. 476
22.3 Results ... 478
22.4 Discussion ... 485
22.5 Appendix: Contamination of the household waste site at Hasenbühl. 493

23 The sublethal enchytraeid test system: guidelines and some results
by W. WESTHEIDE and D. BETHKE-BEILFUSS .. 497
23.1 Introduction ... 497
23.2 The test guidelines ... 499
23.3 Test results and discussion 503
24 Transfer mechanisms and deposition rates of atmospheric pollutants
by W. KUTTLER
24.1 Introduction .. 509
24.2 The emissions of different pollutants in the Federal Republic of Germany .. 510
24.3 Mechanisms of atmospheric self-cleaning
24.3.1 Dry deposition of pollutants
24.3.2 Humid deposition of pollutants
24.3.3 Wet deposition of pollutants
24.3.4 Filtration of pollutants by vegetation
24.3.5 Methods of measurement of dry, wet and humid deposition .. 517
24.4 Comparative analysis of pollution in an industrial agglomeration and a clean-air area .. 519
24.4.1 Concentrations of pollutants
24.4.2 Anion equivalents
24.4.3 Deposition of pollutants .. 522
24.5 Results of investigations of pollutant transfer into individual tree stands .. 525
24.6 Conclusion and discussion .. 528

25 Gaseous air pollutants and forest floor vegetation — a case study at different levels of integration
by L. STEUBING and A. FANGMEIER
25.1 Introduction .. 539
25.2 Gaseous air pollutants and their effects on forest floor vegetation — what is known? .. 540
25.3 The experiment .. 541
25.3.1 Study area .. 541
25.3.2 Fumigations .. 541
25.3.3 Vegetation analyses .. 544
25.4 Results and discussion .. 544
25.4.1 Pollutant effects at the population level .. 544
25.4.2 Pollutant effects at the micromorphological level .. 550
25.5 Pollutant effects at the physiological level .. 551
25.6 Pollutant effects at the biochemical level .. 557
25.7 Conclusions .. 562

26 Eutrophication in forest ecosystems
by P. JAKUCS
26.1 Introduction .. 571
26.2 Indicator populations of eutrophication .. 572
26.3 Examples of terrestrial eutrophication in forest stands .. 572
XXVI

26.3.1 Terrestrial eutrophication as an accompanying phenomenon of the new type of forest decline 572

26.3.2 Terrestrial eutrophication as an accompanying phenomenon of clear-cutting 573

26.3.3 Terrestrial eutrophication in black locust forest stands 575

26.3.4 Eutrophication in forests as the deterioration in the quality of the forest 576

26.3.5 Terrestrial eutrophication in semi-natural forest communities 576

26.3.6 Natural and artificial terrestrial eutrophication 577

27 Animal-coenoses in the “spruce forest” ecosystem (*Protozoa, Metazoa-invertebrates*): Indicators of alterations in forest-ecosystems

by W. FUNKE and M. ROTH-HOLZAPFEL 579

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1 Introduction</td>
<td>579</td>
</tr>
<tr>
<td>27.2 Study sites, material and methods</td>
<td>580</td>
</tr>
<tr>
<td>27.3 Results and discussion</td>
<td>581</td>
</tr>
<tr>
<td>27.3.1 Soil animals as sensitive indicators of forest decline</td>
<td>581</td>
</tr>
<tr>
<td>27.3.2 Fluctuations of population density and litter decomposition as indicators of alterations in forest-ecosystems (caused by climatic conditions)</td>
<td>581</td>
</tr>
<tr>
<td>27.3.3 Soil animals as indicators of alterations in forest soils, caused by liming, mineral-fertilization or by additional irrigation</td>
<td>585</td>
</tr>
<tr>
<td>27.3.4 Soil arthropods as sensitive indicators (test organisms) of the suitability of pesticides in nature</td>
<td>590</td>
</tr>
<tr>
<td>27.3.5 Invertebrate animals as accumulative indicators of several elements</td>
<td>593</td>
</tr>
</tbody>
</table>

VI The carbon cycle and climate change 601

28 Carbon isotope fractionation during CO₂ fixation by plants

by G. H. SCHLESER 603

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1 Introduction</td>
<td>603</td>
</tr>
<tr>
<td>28.2 Formulation of the model</td>
<td>604</td>
</tr>
<tr>
<td>28.3 Theoretical analysis</td>
<td>606</td>
</tr>
<tr>
<td>28.4 Experimental analysis</td>
<td>612</td>
</tr>
<tr>
<td>28.4.1 Material and methods</td>
<td>612</td>
</tr>
<tr>
<td>28.4.2 Results and discussion</td>
<td>612</td>
</tr>
</tbody>
</table>

29 Carbon dioxide effects on vegetation

by D. OVERDIECK and M. FORSTREUTER 623

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.1 Introduction</td>
<td>623</td>
</tr>
<tr>
<td>29.2 Materials and methods</td>
<td>626</td>
</tr>
<tr>
<td>29.3 Results and discussion</td>
<td>628</td>
</tr>
</tbody>
</table>
29.3.1 Carbohydrates .. 628
29.3.2 Anatomical modifications 629
29.3.3 Phytomass of herbaceous plants 629
29.3.4 Competition ... 633
29.3.5 Phytomass of woody plants 633
29.3.6 CO$_2$ gas exchange of “model ecosystems” 634
29.3.7 Mineral content .. 641
29.3.8 Water budget .. 644
29.4 Modelling the CO$_2$ effect ... 647

30 Tropical grasslands and their role in the global carbon cycle
by D. O. Hall and J. M. O. Scurlock 659
30.1 The importance of tropical grasslands 659
30.2 Accounting for carbon flows 663
30.3 Response to changes in atmospheric carbon dioxide 663
30.4 Effect of changes in other environmental factors 667
30.5 The UNEP grassland productivity project 668
30.6 Grassland burning and the global carbon cycle 669
30.7 Present and future work .. 671
30.8 Conclusions ... 672

31 Osnabrück Biosphere Model: structure, construction, results
by G. Esser ... 679
31.1 Introduction ... 679
31.2 General model concept .. 683
31.3 Model construction .. 685
 31.3.1 Net primary productivity 686
 31.3.2 Litter production .. 691
 31.3.3 Litter depletion ... 692
 31.3.4 Soil organic carbon production 692
 31.3.5 Soil organic carbon depletion 693
 31.3.6 Leaching of dissolved and particulate organic carbon (DOC
 and POC) .. 693
 31.3.7 Land-use changes and deforestation 693
31.4 Geographical data for running the model 696
31.5 Fundamental model results 697
31.6 Conclusions ... 703

32 Vegetation and climate: a tenuous link
by J. Grace .. 711
32.1 Introduction ... 711
32.2 Soils will change .. 712
32.3 Climate warming in the uplands 713
32.4 Some negative effects of temperature on productivity 716
32.5 Northern and southern plants ... 717
32.6 Beware of pests, diseases, droughts and winds 718
32.7 What should we do? ... 718

VII Remote sensing and geographic modelling 723

33 Global ecology: the role of remote sensing
by D. E. Wickland 725
33.1 Introduction ... 725
33.2 Ecological information from remote sensing 726
 33.2.1 The interaction of electromagnetic radiation with the Earth’s
 surface .. 726
 33.2.2 Basic observations across the electromagnetic spectrum .. 727
 33.2.3 Specialized measurements and observation techniques 738
33.3 Discussion ... 740
33.4 Conclusions .. 741

34 Search for geographic scale regularities in ecosystem processes
by A. I. Breymeyer 751
34.1 Introduction ... 751
34.2 Definitions and assumptions ... 752
34.3 Geographical changeability of production and decomposition of
 organic matter — review of selected maps 754
34.4 Production and decomposition of litter on two climatic transects
34.4.1 North–South transect ... 759
34.4.2 Mountain transect .. 765

35 Geographic modeling and modern ecology
by E. O. Box and V. Meentemeyer 773
35.1 Introduction ... 773
35.2 Predictive modeling .. 774
35.3 Building geographic models .. 776
35.4 Ecological phenomena and global patterns 777
 35.4.1 The thermal pattern ... 778
 35.4.2 The moisture pattern ... 782
 35.4.3 The throughput pattern 784
 35.4.4 The accumulation pattern 788
 35.4.5 Other phenomena ... 790
35.5 Geographic inventories .. 790
35.6 Validating geographic models 791
35.7 Conclusion .. 793
VIII Urban and landscape ecology 805

36 Distribution patterns of flowering plants in the city of Zurich
by E. LANDOLT 807
36.1 Introduction ... 807
36.2 Methods of the inventory ... 808
36.3 Some ecological characteristics of Zurich 808
36.4 Some distribution patterns ... 810
36.4.1 Common species .. 810
36.4.2 Frequent but not common species 812
36.4.3 Plants common or rather common 150 years ago which have become infrequent ... 815
36.4.4 Typical species of the developed areas 816
36.4.5 Species of southern slopes 818
36.4.6 Species of northern slopes and higher altitudes 818
36.4.7 Species with a southern limit 818
36.4.8 Mountain species .. 818
36.4.9 Shore species .. 818
36.4.10 Species introduced by the Sihl river 820
36.5 Neophytes ... 820
36.6 Discussion .. 820

37 Urban ecosystems and coastal management
by M. NUMATA 823
37.1 Introduction .. 823
37.2 The history of Tokyo Bay and its coastal zone 824
37.3 The Keiyo Industrial Zone and bay–coast cities 825
37.4 Concluding remarks .. 828

38 Landscape ecology — fundamentals, aims and perspectives
by H. LESER and H. RODD 831
38.1 What is "landscape ecology"? .. 831
38.1.1 Definition of the subject matter of landscape ecology 833
38.1.2 Landscape ecology as a scientific branch 833
38.2 Methodical and methodological perspectives of landscape ecology 835
38.2.1 Who practices landscape ecology? 835
38.2.2 Problems of landscape ecological methodology seen from the practical point of view ... 836
38.3 Landscape ecology — "ecological policy" — methodology: Is there some interdependence? ... 839
38.3.1 "Ecological planning" and "ecological policy" 839
38.3.2 Possibilities and limits of landscape ecological methodology 840
38.4 Landscape ecology — Where does it lead to? 842