Nucleic Acid Targeted Drug Design

edited by
C.L. Propst
Center for Biotechnology
Northwestern University
Evanston, Illinois

Thomas J. Perun
Abbott Laboratories
Abbott Park, Illinois

Marcel Dekker, Inc. New York • Basel • Hong Kong
Contents

Preface v
Contributors xi

1. Designing Drugs that Interact with Nucleic Acids 1
 Thomas J. Perun and C. L. Propst
 I. Introduction 1
 II. The Drug Design Process 2
 III. Computer-Aided Drug Design 4
 IV. The Nucleic Acids as Targets 7
 V. Drugs that Interact with Nucleic Acids 10
 VI. Future Considerations 12
 References 12

METHODS

2. Structural Studies of Drug-DNA Interactions by X-ray 17
 Crystallography and NMR Spectroscopy
 Andrew H.-J. Wang and Howard Robinson
 I. Introduction 17
 II. X-ray Crystallography 19
 III. NMR Spectroscopy 36
 IV. Discussion 54
 V. Future Challenges 57
 References 57

3. Modeling Drug–Nucleic Acid Interactions: An Exercise in 65
 Computer Graphics and Computational Chemistry
 Shashidhar N. Rao
 I. Introduction 66
 II. Model Building 70
 III. Results and Discussion 80
 IV. General Remarks 87
 V. Conclusions 88
 References 89

vii
4. Sequence Specificity of Drug-DNA Interactions
 James C. Dabrowiak, Allison A. Stankus, and Jerry Goodisman
 I. Introduction 93
 II. Methods for Studying Sequence Specificity 94
 III. Quantitative Footprinting Analysis 127
 IV. Kinetic Data for Drug-DNA Interactions Using a Sequencing Gel 138
 V. Conclusions 139
 References 140

5. Construction of Quantitative Structure-Activity Relationships (QSARs) from Ligand-DNA Molecular Modeling Studies
 A. J. Hopfinger, Mario Gustavo Cardozo, and Yoshiyuki Kawakami
 I. Introduction 152
 II. Observed Structure-Activity Relationships 153
 III. Modes of Action 154
 IV. Current Status of Molecular Modeling of Ligand-DNA Interactions 155
 V. DNA-Ligand Intercalation Modeling Problems 155
 VI. QSAR Intercalation Studies 160
 VII. Summary 190
 References 190

6. The Molecular Basis of Sequence-Specific DNA-Protein Interactions
 Thomas Kodadek
 I. Introduction 196
 II. DNA Metabolism: A Brief Overview 197
 III. Sequence-Specific Protein-DNA Interactions: Theoretical Considerations 217
 IV. Major Structural Motifs for Sequence-Specific DNA Binding: The Helix-Turn-Helix 222
 V. The Homeodomain: A Eukaryotic Version of the Helix-Turn-Helix Motif 249
 VI. Zinc Finger Proteins 257
 VII. The Leucine Zipper 275
 VIII. The EcoRI Endonuclease-DNA Complex 283
 IX. The Arc/Mnt/Met Repressor Family 285
 X. Summary and Conclusions 289
 References 292
Applications

7. Netropsin and the Lexitropsins: The Search for Sequence-Specific Minor-Groove-Binding Ligands
 Mary L. Kopka and Teresa A. Larsen

 I. Introduction 304
 II. How Drugs Bind to DNA 304
 III. Minor Groove Binders 307
 IV. Drug Recognition Patterns 337
 V. GC Recognition: The Lexitropsin Rationale 339
 VI. Alternate Strategies in Drug Design 351
 VII. Conclusion 360
 References 360

8. Pyrrolo(1,4)benzodiazepines: Unraveling the Complexity of the Structures of the Tomaymycin-DNA Adducts in Various Sequences Using Fluorescence, 'H-NMR, and Molecular Modeling
 William A. Remers, Mary D. Barkley, and Laurence H. Hurley

 I. Introduction 376
 II. Techniques 379
 III. Oligomers 381
 IV. Determination of the Structural Aspects of the Tomaymycin-DNA Adducts 382
 V. Effect of Tomaymycin Bonding on Backbone and Sugar Geometry on d(CICGAATTCICG)2 405
 VI. Intermolecular Interactions Determining the Orientation and Stereochemistry of Tomaymycin on d(ATGCAT)2 and d(CICGAATTCICG)2 413
 VII. Biochemical and Biological Implications 417
 VIII. Conclusions 419
 References 419

 Lester A. Mitscher and Linus L. Shen

 I. Introduction 424
 II. Structure-Activity Relationships of Quinolones 438
 III. Methods Used for Studying the Mode of Action of Topoisomerase Inhibitors 446
 IV. Model of Quinolone Inhibition of DNA Gyrase 457
 V. Implications of the Model in Drug Design 461
 VI. Conclusions 465
 References 467