Analgesic and NSAID-induced Kidney Disease

Edited by

J.H. STEWART

Associate Dean, Western Clinical School
University of Sydney, Australia

Oxford New York Tokyo Melbourne
OXFORD UNIVERSITY PRESS
1993
CONTENTS

List of contributors xvi

1 Historical introduction 1
 'Phenacetin nephritis' in Switzerland 1
 Renal papillary necrosis in Scandinavia and Australia 2
 The association with urothelial cancer 2
 The pathology of analgesic nephropathy 3
 The aetiology of analgesic nephropathy 3
 Unanswered questions 4

2 The biochemistry and pharmacology of antipyretic–analgesics 5
 Aspirin and salicylate 5
 Chemistry 5
 Pharmacokinetics 6
 Mode of action 8
 Toxicity 9
 Paracetamol (acetaminophen) 9
 Pharmacokinetics 10
 Mechanism of action and pharmacological properties 12
 Toxicity 12
 Phenacetin 13
 Pharmacokinetics 13
 Action 14
 Toxicity 14
 Pyrazolons 15
 Pharmacology 15
 Conclusions 16

3 Experimental evidence for nephrotoxicity of analgesics 17
 Summary of experimental results 17
 Phenacetin 17
 Paracetamol 19
 Aspirin 22
Contents

Psychological aspects of drug use patterns 52
 Do consumers differ from non-consumers with regard to personality? 53
 Do groups of consumers with varying patterns of use differ? 55
Treatment and prevention 57

6 The analgesic syndrome 58
 Caffeine 60
 Withdrawal headache 60
 Direct caffeine toxicity 60
 Codeine 61
 Aspirin and salicylates 61
 Gastric ulcer 61
 Bleeding tendency 63
 Perinatal morbidity and mortality 63
 Phenacetin and paracetamol 64
 Cyanosis, haemolysis, and splenomegaly 64
 Pigmentation 64
 Pyrazolon derivatives 64
 Disorders of mixed or uncertain aetiology 64
 Central nervous system toxicity 64
 Accelerated atherogenesis 65
 Premature ageing 65
 A typical analgesic habitué 65

7 The pathology of analgesic nephropathy 67
 The lesions of analgesic-induced renal disease 67
 Capillary sclerosis 67
 Development of papillary necrosis 68
 The relationship of cortical change to papillary necrosis 74
 Fully developed analgesic nephropathy 77
 Pathogenesis of analgesic-induced lesions 79
 Specificity of the analgesic-induced lesion 80
 Complications of analgesic nephropathy 81
 Hypertension 81
 Pyelonephritis 81
 Obstruction 82
 Cysts 82
 Urothelioma 82
Analgesic and NSAID-induced Kidney Disease

- Correlation between clinical presentation and morphology 82
- Cessation of analgesic abuse 83
- Concluding remarks 85

8 The diagnosis of analgesic nephropathy by organ imaging

- Morphological features of analgesic nephropathy 86
 - Early signs 86
 - Partial papillary necrosis 86
 - Total papillary necrosis 88
 - Necrosis \textit{in situ} 88
 - The outcome of papillary sloughing 89
 - Parenchymal changes in analgesic nephropathy 89
 - Transitional cell carcinoma 89

Imaging techniques
- Pyelography 94
- Ultrasonography 95
- Computed tomography and plain film radiology 96

Differential diagnosis
- Normal kidney 98
- Calyceal cysts 98
- Reflux nephropathy (chronic pyelonephritis) 98
- Medullary sponge kidney 99
- Hydronephrotic atrophy 101
- Tuberculosis 101
- Metabolic nephrocalcinosis 101

9 Functional defects in analgesic nephropathy

- Urinary abnormalities 102
 - Microscopy 102
 - Proteinuria 102
 - Acute urinary response to analgesic ingestion 103

- Renal dysfunction 103
 - Glomerular filtration rate 103
 - Tubular dysfunction 103

- Consequences of renal impairment 106
 - Hyperuricaemia 106
 - Hypertension 106
 - Renal osteodystrophy 107

- Effect of cessation of analgesic abuse 107
10 Clinical presentations of analgesic nephropathy 108
 Approach to the evaluation of patients 108
 Drug history 108
 Clinical examination 110
 Specific diagnosis of analgesic nephropathy 111
 Major clinical presentations 111
 Renal insufficiency 111
 Abnormal urinary findings 113
 Hypertension 113
 Papillary necrosis and calculus formation 114
 Urinary obstruction 114
 The value of renal biopsy 115
 Renal transplant failure 115
 Analgesic intake in patients with intrinsic renal disease 116
 Summary 117

11 Treatment of renal failure due to analgesics 119
 Prevention of further abuse 119
 Progression of analgesic nephropathy 121
 Discontinuation of analgesic intake 121
 Glomerulosclerosis 121
 Renal artery stenosis 121
 Acute renal failure 122
 Management of complications 123
 Urinary tract infections 123
 Salt-losing nephropathy 123
 Renal osteodystrophy 123
 Arterial hypertension 125
 Accelerated atherogenesis 125
 Anaemia 126
 Carcinoma 126
 Haemodialysis 127
 Acceptance for maintenance dialysis 127
 Renal transplantation 129
 Summary 131

12 Biochemistry and pharmacology of non-steroidal
 anti-inflammatory drugs and renal prostaglandins 133
 Biochemistry and distribution of renal eicosanoids 135
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release of arachidonic acid</td>
<td>135</td>
</tr>
<tr>
<td>Oxidation of arachidonic acid</td>
<td>135</td>
</tr>
<tr>
<td>Degradation and elimination of eicosanoids</td>
<td>136</td>
</tr>
<tr>
<td>Renal distribution of eicosanoids</td>
<td>136</td>
</tr>
<tr>
<td>Synthesis and physiology of glomerular eicosanoids</td>
<td>137</td>
</tr>
<tr>
<td>Synthesis</td>
<td>137</td>
</tr>
<tr>
<td>Vasomotor action of glomerular eicosanoids</td>
<td>138</td>
</tr>
<tr>
<td>Modification of inflammatory responses by glomerular eicosanoids</td>
<td>139</td>
</tr>
<tr>
<td>Synthesis and physiology of tubular eicosanoids</td>
<td>139</td>
</tr>
<tr>
<td>Synthesis</td>
<td>139</td>
</tr>
<tr>
<td>Functions</td>
<td>139</td>
</tr>
<tr>
<td>Effects of local inhibition of cyclooxygenase</td>
<td>141</td>
</tr>
<tr>
<td>Inactivation of renal cyclooxygenase</td>
<td>142</td>
</tr>
<tr>
<td>Differential inhibition of human cyclooxygenase</td>
<td>143</td>
</tr>
<tr>
<td>Low dose aspirin</td>
<td>144</td>
</tr>
<tr>
<td>Sulindac</td>
<td>144</td>
</tr>
<tr>
<td>Tissue specific activities of non-steroidal anti-inflammatory drugs</td>
<td>145</td>
</tr>
<tr>
<td>Conclusions</td>
<td>146</td>
</tr>
<tr>
<td>13 Effects of non-steroidal anti-inflammatory drugs on renal function</td>
<td>147</td>
</tr>
<tr>
<td>Prostaglandins in the kidney</td>
<td>147</td>
</tr>
<tr>
<td>Modulatory role</td>
<td>147</td>
</tr>
<tr>
<td>Processes regulated by basal levels of prostaglandins</td>
<td>148</td>
</tr>
<tr>
<td>States associated with increased renal prostaglandin synthesis</td>
<td>148</td>
</tr>
<tr>
<td>The effect of prostaglandins on renal function</td>
<td>148</td>
</tr>
<tr>
<td>Renal haemodynamics</td>
<td>148</td>
</tr>
<tr>
<td>Glomerular function</td>
<td>149</td>
</tr>
<tr>
<td>Tubular processes</td>
<td>150</td>
</tr>
<tr>
<td>Endocrine effects</td>
<td>150</td>
</tr>
<tr>
<td>Renal effects of non-steroidal anti-inflammatory drugs</td>
<td>151</td>
</tr>
<tr>
<td>Normal individuals</td>
<td>151</td>
</tr>
<tr>
<td>Disease states</td>
<td>152</td>
</tr>
<tr>
<td>Special populations</td>
<td>154</td>
</tr>
<tr>
<td>Clinical syndromes resulting from non-steroidal anti-inflammatory drugs</td>
<td>154</td>
</tr>
<tr>
<td>Potassium, sodium, and water retention</td>
<td>156</td>
</tr>
<tr>
<td>Intrinsic kidney disease</td>
<td>156</td>
</tr>
</tbody>
</table>
Renal sparing non-steroidal anti-inflammatory drugs
 Sulindac
 Salicylates
Beneficial renal effects of non-steroidal anti-inflammatory drugs
Long term renal effects of non-steroidal anti-inflammatory drugs
Summary
Acknowledgements

14 Diseases of the kidney caused by non-steroidal anti-inflammatory drugs
 Incidence
 Acute interstitial nephritis
 Drugs involved
 Clinical features
 Pathology
 Diagnosis
 Pathogenesis
 Treatment
 Acute tubular necrosis
 Minimal change nephrotic syndrome
 Other glomerulopathies
 Membranous nephropathy
 Proliferative glomerulonephritis
 Papillary necrosis and chronic renal failure
 Other lesions
 Tubular obstruction
 Conclusions

15 Paracetamol-induced renal tubular cell necrosis
 Experimental evidence
 Histological findings in experimental animals
 Clinical observations
 Nephrotoxicity with no or little liver damage
 Clinical presentation
 Histological findings in patients
 Summary

16 Experimental evidence and the biochemical basis for the role of analgesics in cancer
 Urothelial tumours—induction and initiation
The aetiological role of analgesic abuse
 Phenacetin—an aetiological red herring
 Analgesics as carcinogens

Experimental models of renal papillary necrosis
 Papillotoxin-induced histochemical changes in renal papillae
 The probable mechanism of renal papillary necrosis
 Urothelial hyperplasia following renal papillary necrosis

Experimental models of upper urothelial carcinoma
 Spontaneous urothelial carcinoma
 One-stage models of upper urothelial carcinogenesis
 Two-stage models of upper urothelial carcinogenesis
 The relationship between renal papillary necrosis and upper urothelial cancer in man

Acknowledgements

Analgesics as human carcinogens—clinical and epidemiological evidence
 Case series
 Formal epidemiological evidence
 Case–control studies
 Cohort studies
 Summary of evidence implicating phenacetin or other analgesic drugs
 Evidence implicating renal papillary necrosis
 Population attributable risks
 Incidence of renal pelvic cancer
 Summary

Carcinoma of the renal pelvis
 Pathology
 Incidence
 Clinical aspects
 Diagnosis
 Treatment
 Prognosis

Prevention of analgesic-induced kidney disease
 The aetiology of analgesic-induced kidney disease
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The conclusion based on epidemiological evidence</td>
<td>217</td>
</tr>
<tr>
<td>The conclusion based on laboratory evidence</td>
<td>218</td>
</tr>
<tr>
<td>Strategies for prevention</td>
<td>218</td>
</tr>
<tr>
<td>Prohibition of phenacetin (and paracetamol)</td>
<td>218</td>
</tr>
<tr>
<td>Restrictions on marketing compound analgesic preparations</td>
<td>219</td>
</tr>
<tr>
<td>Education and lobbying</td>
<td>219</td>
</tr>
<tr>
<td>Forces promoting continuance of analgesic consumption</td>
<td>220</td>
</tr>
<tr>
<td>The reality</td>
<td>221</td>
</tr>
<tr>
<td>Prevention of secondary renal damage</td>
<td>221</td>
</tr>
<tr>
<td>References</td>
<td>223</td>
</tr>
<tr>
<td>Index</td>
<td>285</td>
</tr>
</tbody>
</table>