Contents of All Volumes

Volume 1 General Principles

Historical Perspective

1.1 Medicinal Chemistry: A Personal View
1.2 Chronology of Drug Introductions
1.3 Evolution of the Pharmaceutical Industry
1.4 Development of Medicinal Chemistry in China
1.5 Contribution of Ayurvedic Medicine to Medicinal Chemistry

Targets of Biologically Active Molecules

2.1 Physiology of the Human Body
2.2 The Architecture of the Cell
2.3 Macromolecular Targets for Drug Action
2.4 The Concept of Bioselectivity
2.5 The Immune System
2.6 Selectivity

Bioactive Materials

3.1 Classification of Drugs
3.2 Lead Structure Discovery and Development
3.3 Computer-aided Selection for Large-scale Screening
3.4 Isolation of Bioactive Materials and Assay Methods
3.5 Biomaterials from Mammalian Sources
3.6 Development and Scale-up of Processes for the Manufacture of New Pharmaceuticals
3.7 Genetic Engineering: The Gene
3.8 Genetic Engineering: Applications to Biological Research
3.9 Genetic Engineering: Commercial Applications

Socio-economic Factors of Drug Development

4.1 Industrial Factors and Government Controls
4.2 Organization and Funding of Medical Research in the UK
4.3 Organization and Funding of Medical Research in the USA
4.4 Health Care in the UK
4.5 Health Care in the USA
4.6 Good Pharmaceutical Manufacturing Practice
4.7 Toxicological Evaluation of New Drugs
4.8 Clinical Pharmacology and Clinical Trials
4.9 Post-marketing Surveillance
4.10 Animal Experimentation
4.11 Orphan Drugs
4.12 Patents
4.13 Trade Marks
4.14 Sources of Information

Subject Index
Contents of All Volumes

Volume 2 Enzymes and Other Molecular Targets

Enzymes

5.1 Enzyme Structure
5.2 Nomenclature and Classification of Enzymes
5.3 Enzyme Catalysis
5.4 Enzyme Inhibition
5.5 Resistance and Tolerance to Antimicrobial Drugs

Agents Acting on Oxygenases, Electron Transport Systems and Pyridoxal Dependent Systems

6.1 Oxygenases
6.2 The Arachidonic Acid Cascade
6.3 Agents Acting on Passive Ion Transport
6.4 Agents Acting on Active Ion Transport
6.5 Pyridoxal Dependent Systems

Agents Acting on Metabolic Processes

7.1 Sulfonamides and Sulfones
7.2 Reductases
7.3 Purine and Pyrimidine Targets
7.4 Therapeutic Consequences of the Inhibition of Sterol Metabolism

Agents Acting on Hydrolases and Peptidases

8.1 Hydrolases
8.2 Peptidase Inhibitors
8.3 Enzyme Cascades: Purine Metabolism and Immunosuppression
8.4 Enzyme Cascades: Coagulation, Fibrinolysis and Hemostasis
8.5 Selective Inhibitors of Phosphodiesterases
8.6 Agents Acting Against Phospholipases A₂
8.7 Protein Kinases

Agents Acting on Cell Walls

9.1 Cell Wall Structure and Function
9.2 ß-Lactam Antibiotics: Penicillins and Cephalosporins
9.3 Other ß-Lactam Antibiotics

Agents Acting on Nucleic Acids

10.1 DNA Intercalating Agents
10.2 DNA Binding and Nicking Agents
10.3 Agents Interfering with DNA Enzymes
10.4 Inhibitors of the Transcribing Enzymes: Rifamycins and Related Agents
10.5 Agents which Interact with Ribosomal RNA and Interfere with its Functions

Subject Index
Volume 3 Membranes and Receptors

Membranes, Membrane Receptors and Second Messenger Pathways

11.1 Structure and Function of Cell Membranes
11.2 Quantitative Analysis of Ligand–Receptor Interactions
11.3 Isolation, Purification and Molecular Biology of Cell Membrane Receptors
11.4 Transduction Signalling, Second Messenger Analogues and Inositol Phosphates

Neurotransmitter and Autocoid Receptors

12.1 α-Adrenergic Receptors
12.2 β-Adrenergic Receptors
12.3 Dopamine Receptors
12.4 Peripheral Dopamine Receptors
12.5 Histamine Receptors
12.6 Cholinergic Receptors
12.7 Amino Acid Receptors
12.8 Ligand Interactions at the Benzodiazepine Receptor
12.9 Serotonin (5-HT) Receptors
12.10 Adenosine (P1) and ATP (P2) Receptors
12.11 Prostanoid Receptors
12.12 Platelet Activating Factor Receptors
12.13 Leukotriene Receptors

Peptidergic Receptors

13.1 Design of Drugs Acting at Peptidergic Receptors
13.2 Opioid Receptors
13.3 Hypothalamic and Adenohypophyseal Hormone Receptors
13.4 Neurohypophyseal Hormone Receptors
13.5 Glucagon and Insulin Receptors
13.6 Gastrointestinal Regulatory Peptide Receptors
13.7 Angiotensin and Bradykinin Receptors
13.8 Atrial Natriuretic Factor Receptors
13.9 Tachykinin Receptors
13.10 Calcitonin and Parathyroid Hormone Receptors

Drugs Acting on Ion Channels and Membranes

14.1 Drugs Acting on Ion Channels and Membranes

Lymphokines and Cytokines

15.1 Lymphokines and Cytokines of the Immune System

Intracellular Receptors

16.1 Molecular Mechanism of the Action of 1,25-Dihydroxyvitamin D3
16.2 Thyroid Hormone Receptors
16.3 Steroid Hormone Receptors

Subject Index
Contents of All Volumes

Volume 4 Quantitative Drug Design

Introduction to Drug Design and Molecular Modelling

17.1 History and Objectives of Quantitative Drug Design
17.2 Computers and the Medicinal Chemist
17.3 Chemical Structures and Computers
17.4 Use and Limitations of Models and Modelling in Medicinal Chemistry

Quantitative Description of Physicochemical Properties of Drug Molecules

18.1 Quantum Mechanics and the Modeling of Drug Properties
18.2 Molecular Mechanics and the Modeling of Drug Structures
18.3 Dynamic Simulation and its Applications in Drug Research
18.4 Three-dimensional Structure of Drugs
18.5 Electronic Effects in Drugs
18.6 Hydrophobic Properties of Drugs
18.7 Methods of Calculating Partition Coefficients
18.8 Intermolecular Forces and Molecular Binding

Quantitative Description of Biological Activity and Drug Transport

19.1 Quantitative Description of Biological Activity
19.2 Molecular Structure and Drug Transport

Molecular Graphics and Drug Design

20.1 Introduction to Computer Graphics and Its Use for Displaying Molecular Structures
20.2 Use of Molecular Graphics for Structural Analysis of Small Molecules
20.3 Application of Molecular Graphics to the Analysis of Macromolecular Structures

Quantitative Structure–Activity Relationships

21.1 The Extrathermodynamic Approach to Drug Design
21.2 The Design of Test Series and the Significance of QSAR Relationships
21.3 The Free–Wilson Method and its Relationship to the Extrathermodynamic Approach

Pattern Recognition and Other Statistical Methods for Drug Design

22.1 Substructural Analysis and Compound Selection
22.2 Linear Discriminant Analysis and Cluster Significance Analysis
22.3 Pattern Recognition Techniques in Drug Design
22.4 The Distance Geometry Approach to Modeling Receptor Sites

Subject Index

Volume 5 Biopharmaceutics

Principles of Pharmacokinetics and Metabolism

23.1 Absorption Processes
23.2 Pharmacokinetic Aspects of Drug Administration and Metabolism
23.3 Distribution and Clearance Concepts
23.4 Sites of Drug Metabolism, Prodrugs and Bioactivation
23.5 Metabolic Pathways
Contents of All Volumes

23.6 Drug Interactions
23.7 Stereoselectivity in Pharmacokinetics and Drug Metabolism
23.8 Enzyme Induction and Inhibition
23.9 Species Differences in Drug Metabolism
23.10 Developmental Drug Metabolism
23.11 Pharmacogenetics
23.12 Chronokinetics
23.13 Population Pharmacokinetics
23.14 Toxicokinetics
23.15 Pharmacodynamics

Analytical Methodology

24.1 Use of Isotopes in Quantitative and Qualitative Analysis
24.2 Chemical Analysis
24.3 Biological Analysis
24.4 Methods in Drug Metabolism
24.5 Isolation and Identification of Metabolites
24.6 Systems Analysis in Pharmacokinetics

Chemistry and Pharmacy in Drug Development

25.1 Physicochemical Principles
25.2 Formulation
25.3 Routes of Administration and Dosage Regimes
25.4 Delivery System Technology
25.5 Drug Targeting

Subject Index

Volume 6

Cumulative Subject Index

Drug Compendium