Contents

Preface

1. Introduction and overview
2. Lipid diversity and distribution
 2.1. Chemical diversity of lipids
 2.2. Membrane lipid compositions
 2.3. Transbilayer lipid asymmetry
3. Model membrane systems
 3.1. Lipid isolation and purification
 3.2. Techniques for making model membrane vesicles
 3.3. Techniques for making planar bilayers and monolayers
 3.4. Reconstitution of integral membrane protein into vesicles
4. Physical properties of lipids
 4.1. Gel-liquid-crystalline phase behaviour
 4.2. Lipid polymorphism
 4.3. Factors which modulate lipid polymorphism
 4.4. The physical basis of lipid polymorphism
5. Lipids and the permeability properties of membranes
 5.1. Theoretical considerations
 5.2. Permeability of water and non-electrolytes
 5.3. Permeability of ions
6. Lipid–protein interactions
 6.1. Extrinsic proteins
 6.2. Intrinsic proteins
7. Lipids and membrane fusion
 7.1. Fusion of model systems
 7.2. Fusion of biological membranes
8. Model membranes and drug delivery
9. Future directions
References

Chapter 1. Physical properties and functional roles of lipids in membranes

Pieter R. Cullis and Michael J. Hope

1. Introduction and overview
2. Lipid diversity and distribution
 2.1. Chemical diversity of lipids
 2.2. Membrane lipid compositions
 2.3. Transbilayer lipid asymmetry
3. Model membrane systems
 3.1. Lipid isolation and purification
 3.2. Techniques for making model membrane vesicles
 3.3. Techniques for making planar bilayers and monolayers
 3.4. Reconstitution of integral membrane protein into vesicles
4. Physical properties of lipids
 4.1. Gel-liquid-crystalline phase behaviour
 4.2. Lipid polymorphism
 4.3. Factors which modulate lipid polymorphism
 4.4. The physical basis of lipid polymorphism
5. Lipids and the permeability properties of membranes
 5.1. Theoretical considerations
 5.2. Permeability of water and non-electrolytes
 5.3. Permeability of ions
6. Lipid–protein interactions
 6.1. Extrinsic proteins
 6.2. Intrinsic proteins
7. Lipids and membrane fusion
 7.1. Fusion of model systems
 7.2. Fusion of biological membranes
8. Model membranes and drug delivery
9. Future directions

Chapter 2. Lipid metabolism in procaryotes

S. Jackowski, J.E. Cronan Jr. and C.O. Rock

1. The study of bacterial lipid metabolism
2. Historical introduction
3. An overview of phospholipid metabolism in *E. coli*
4. Genetic analysis of lipid metabolism
5. Membrane systems of *E. coli*
Chapter 4. Fatty acid synthesis in eucaryotes

Alan G. Goodridge

1. Introduction .. 111
2. Signals in blood that mediate the effects of diet .. 112
3. Which enzymes regulate fatty acid synthesis? ... 114
4. Regulation of substrate supply ... 115
 4.1. Production of pyruvate from glucose .. 115
 4.2. Production of citrate from pyruvate .. 115
 4.3. Production of NADPH ... 117
5. Regulation of the catalytic efficiency of acetyl-CoA carboxylase 117
 5.1. A key regulatory reaction .. 117
 5.2. Structure and reaction mechanism .. 118
 5.3. Regulation by citrate ... 118
 5.4. Regulation by long-chain fatty acyl-CoA .. 119
 5.5. Regulation by covalent modification ... 121
6. Fatty acid synthase .. 125
 6.1. Animal fatty acid synthase: the component reactions 125
 6.2. Animal fatty acid synthase: the subunits are identical 127
 6.3. Animal fatty acid synthase: structural organization 128
 6.4. Comparison of yeast and animal fatty acid synthases 129
7. Regulation of enzyme concentration ... 130
 7.1. Messenger RNA levels regulate enzyme synthesis rates 130
 7.2. Transcription is usually the regulated step 131
 7.3. Regulation in cells in culture .. 134
 7.3.1. 3T3-L1 cells—a pre-adipocyte cell line 134
 7.3.2. Hepatocytes in maintenance culture .. 135
8. Future directions .. 137
References .. 138

Chapter 5. Fatty acid desaturation and chain elongation in eucaryotes

Harold W. Cook

1. Introduction .. 141
2. Historical background .. 143
3. Chain elongation of long chain fatty acids .. 144
Table of Contents

3.1. The microsomal elongation system 146
3.2. The mitochondrial elongation system 147
3.3. Functions of the two elongation systems 148

4. Formation of monounsaturated fatty acids by oxidative desaturation 148
4.1. Nomenclature to describe double bonds 148
4.2. Characteristics of the monoene-forming desaturation enzymes 149
4.3. Modification of Δ9 desaturase activities in vitro 151
4.4. Dietary and hormonal regulation of Δ9 desaturase 152
4.5. Formation of monounsaturated fatty acids in plants 154

5. Formation of polyunsaturated fatty acids 154
5.1. Characteristics and restrictions in animal systems 154
5.2. Essential fatty acids—a contribution of plant systems 155
5.3. Families of fatty acids and their metabolism 157
 5.3.1. The (n-6) family .. 157
 5.3.2. The (n-3) family .. 159
 5.3.3. Competition between the (n-6) and (n-3) families 160
 5.3.4. The (n-9) family .. 161
 5.3.5. The (n-7) family .. 161
5.4. Dietary and hormonal alterations of polyunsaturated acid synthesis 161
5.5. Two or more double bonds in plants 163

6. Unsaturated fatty acids with trans double bonds 164

7. Abnormal patterns of distribution and metabolism of long chain saturated and unsaturated fatty acids 165
 7.1. Essential fatty acid deficiency 165
 7.2. Zinc deficiency ... 166
 7.3. Other clinical disorders 166
 7.4. Relationship to plasma cholesterol 166
7.5. Future directions ... 167

8. References .. 168

Chapter 6. Metabolism of triacylglycerols

David N. Brindley

1. Introduction ... 171
2. Biosynthesis of triacylglycerols 173
 2.1. Biosynthesis of phosphatidate 173
 2.2. Conversion of phosphatidate to triacylglycerol 178
 2.3. Conversion of monoacylglycerol to triacylglycerol 179
3. Digestion, absorption and transport of lipids 181
 3.1. Digestion of lipids .. 181
 3.2. Absorption of lipids from the small intestine 183
 3.3. Formation of chylomicrons and VLDL 184
 3.4. Partitioning of fatty acids between the portal blood and the lymphatic system 186
4. Control of triacylglycerol synthesis 187
 4.1. Control of phosphatidate synthesis in the liver 188
 4.2. Control of the conversion of phosphatidate to triacylglycerol in liver 189
 4.3. Diacylglycerol as a precursor of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine 193
5. Metabolism of triacylglycerols when the action of insulin is high 195
6. Triacylglycerol metabolism in conditions of metabolic stress 198
Chapter 7. Phospholipid metabolism and cell signalling in eucaryotes

Dennis E. Vance

1. Introduction ... 205

2. Phosphatidylcholine biosynthesis ... 206
 2.1. Historical background .. 206
 2.2. Choline transport and oxidation .. 207
 2.3. Enzymes of the CDP-choline pathway .. 207
 2.4. Phosphatidylethanolamine-N-methyltransferase 208

3. Regulation of phosphatidylcholine biosynthesis 209
 3.1. The rate-limiting reaction .. 209
 3.2. The translocation hypothesis ... 210
 3.3. Regulatory mechanisms ... 210
 3.3.1. Fatty acids are important regulators of phosphatidylcholine biosynthesis in cultured cells 211
 3.3.2. Diacylglycerol may also regulate phosphatidylcholine biosynthesis .. 211
 3.3.3. Phosphorylation–dephosphorylation reactions .. 212
 3.3.4. Feedback regulation .. 212
 3.3.5. Cholinephosphotransferase ... 213
 3.4. Substrate channeling .. 213

4. Sphingomyelin biosynthesis .. 214

5. Phosphatidylserine biosynthesis ... 215
 5.1. Historical developments and biosynthesis 215
 5.2. CHO mutants and regulation ... 217

6. Phosphatidylethanolamine biosynthesis ... 218
 6.1. Historical background ... 218
 6.2. Enzymes of the CDP-ethanolamine pathway 218
 6.3. Regulation of the CDP-ethanolamine pathway 219
 6.3.1. Regulation at the cytidylyltransferase reaction 219
 6.3.2. Diacylglycerol .. 220
 6.4. Phosphatidylserine decarboxylation and the relative importance of the various pathways for phosphatidylethanolamine biosynthesis .. 221
 6.5. N-acyl-phosphatidylethanolamine ... 221

7. Polyglycerophospholipids ... 222
 7.1. Historical developments and biosynthetic pathways 222
 7.2. Enzymes and subcellular location ... 224

8. Inositol phospholipids .. 224
 8.1. Historical developments .. 224
 8.2. Biosynthetic enzymes ... 225

9. Phospholipids as precursors of cellular second messengers 226
 9.1. Discovery of the phosphatidylinositol cycle 226
 9.2. Degradation of phosphatidylinositol-4,5-bisphosphate by phospholipase C ... 227
 9.3. Metabolism of the inositol phosphates 228
 9.4. Function of inositol phosphates .. 229
 9.5. Diacylglycerol and protein kinase C .. 230
 9.6. Phosphatidylcholine cycles and formation of diacylglycerol 231
Chapter 9. Phospholipases
Moseley Waite

1. Overview
 1.1. Definition of phospholipases
 1.2. Assay of phospholipases
 1.3. Interaction of phospholipases with interfaces

2. The phospholipases
 2.1. Phospholipase A$_2$
 2.2. Phospholipase B and lysophospholipases
 2.3. Phospholipase A$_2$
 2.4. Phospholipase C
 2.5. Phospholipase D
 2.6. Phospholipases in signal transduction

3. Future directions

References

Chapter 10. The eicosanoids: cyclooxygenase, lipoxygenase, and epoxygenase pathways
William L. Smith, Pierre Borgeat and Frank A. Fitzpatrick

1. Introduction

2. Prostanoids
 2.1. Structures and nomenclature
 2.2. Prostanoid chemistry
 2.3. Prostanoid biosynthesis
 2.4. Arachidonate release
 2.5. Prostaglandin endoperoxide formation
 2.6. Physico-chemical properties of PGH synthase
 2.7. PGH synthase and nonsteroidal anti-inflammatory drugs
 2.8. Anti-inflammatory steroids
 2.9. PGH synthase active site
 2.10. Regulation of PGH synthase gene expression
 2.11. PGH$_2$ metabolism
 2.12. Catabolism: prostanoids as local hormones

3. Hydroxy- and hydroperoxy-eicosaenoic acids and leukotrienes
 3.1. Introduction and overview
 3.2. Mechanism of leukotriene biosynthesis in human neutrophils
 3.3. The enzymes of the 5-lipoxygenase pathway
 3.4. Regulation of leukotriene synthesis
 3.5. The metabolism of lipoxygenase products
 3.6. Biological activities of leukotrienes

4. Epoxygenase products
 4.1. Introduction
 4.2. Structures, nomenclature, and biosynthesis
 4.3. Occurrence of epoxygenosatrienoic acids
 4.4. Metabolism of epoxygenase metabolites of arachidonic acid
 4.5. Biological actions of 'epoxygenase' derived EpETrEs and HETrEs
Chapter 12. Cholesterol: evolution of structure and function
Konrad Bloch

1. Natural occurrence of sterols
2. Metabolic and precursor functions of the sterol molecule
3. Sterol patterns
4. Sterols and membrane function
 4.1. Function of sterols in animal membranes
 4.2. Sterol auxotrophs
 4.3. Metabolic regulation in the membrane environment
 4.4. Fluidity control
5. Regulatory roles for sterols in membranes
 5.1. Fungi and invertebrates
 5.2. Sterol effects on hormone and neurotransmitter receptors
 5.3. Sterols and fusion of viral membranes
 5.4. Capping of surface immunoglobulin
 5.5. Sterol effects on enzyme activities
 5.6. Effects of cholesterol on phospholipid synthesis
6. Evolution of the sterol structure
7. Future directions
References

Chapter 13. Regulation of sterol biosynthesis and isoprenylation of proteins
Peter A. Edwards

1. Introduction
2. Regulation of cholesterol synthesis
3. Regulation of cholesteryl ester synthesis
4. Transcriptional control of cholesterol synthesis
5. Posttranscriptional regulation
6. Identification of the physiological regulators
7. Regulation of bile acid synthesis
8. Isoprenylation of proteins
9. Future directions
References

Chapter 14. Lipoprotein structure and secretion
Roger A. Davis

1. Introduction
2. Structure and function of plasma lipoproteins
 2.1. Chylomicrons and very low density lipoproteins
 2.2. Structure: surface components
 2.3. Core components
 2.4. Low density lipoproteins: structure
 2.4.1. Origin of low density lipoproteins
 2.4.2. High density lipoproteins: structure and function
 2.4.3. Discoidal high density lipoproteins
3. Future directions
4. References
5. Cholesteryl ester transfer protein and the later metabolism of lipoprotein cholesterol 452
 5.1. Introduction 452
 5.2. Structure of cholesteryl ester transfer protein 454
 5.3. Mechanism of cholesteryl ester transfer protein activity 454
 5.4. Quantitation of cholesteryl ester transfer 456
 5.5. Physiological regulation of cholesteryl ester transfer protein 456
 5.6. Congenital cholesteryl ester transfer protein deficiency 457
 5.7. Cholesteryl ester transfer protein inhibitor protein 457
6. Summary and future directions 457
References 458

Chapter 16. Removal of lipoproteins from plasma
Wolfgang J. Schneider 461

1. Introduction 461
2. Removal of low density lipoprotein from the circulation 464
 2.1. Receptor-mediated endocytosis 464
 2.2. The low density lipoprotein receptor pathway 465
 2.2.1. Familial hypercholesterolemia: clinical consequences of low density lipoprotein receptor dysfunction 466
 2.2.2. Biochemical findings in cultured fibroblasts from familial hypercholesterolemia homozygotes 467
 2.3. Biosynthesis and structure of the low density lipoprotein receptor 467
 2.3.1. The low density lipoprotein receptor protein 468
 2.3.2. The ligand binding domain 469
 2.3.3. The EGF precursor homology domain 470
 2.3.4. The third domain 470
 2.3.5. The membrane anchoring domain 470
 2.3.6. The cytoplasmic tail 471
 2.4. Molecular defects in low density lipoprotein receptors of patients with familial hypercholesterolemia 471
 2.4.1. The gene for the human low density lipoprotein receptor 471
 2.4.2. Four groups of low density lipoprotein receptor mutations 472
 2.4.2.1. Class 1: no detectable precursor 472
 2.4.2.2. Class 2: slow or absent processing of precursor 472
 2.4.2.3. Class 3: abnormal ligand binding 473
 2.4.2.4. Class 4: internalization defective 474
3. Catabolism of chylomicrons 475
4. High density lipoprotein as a transport vehicle 477
5. Atherosclerosis 478
 5.1. Uptake and modification of low density lipoprotein in the intima 478
 5.2. Scavenger receptors 480
6. Lipoprotein transport in the laying hen 481
7. Low density lipoprotein metabolism by rat serosal mast cells 483
8. Future directions 485
References 485
Chapter 17. Lipid assembly into cell membranes

Denis R. Voelker

1. Introduction ... 489
2. The diversity of lipids 489
3. Methods to study intra- and inter-membrane lipid transport .. 492
 3.1. Fluorescent probes 494
 3.2. Spin labeled analogs 494
 3.3. Asymmetric chemical modification of membranes .. 495
 3.4. Phospholipid transfer proteins 496
 3.5. Rapid plasma membrane isolation 497
 3.6. Organelle specific lipid metabolism 498
4. Lipid transport processes 498
 4.1. Intramembrane lipid translocation and model membranes .. 498
 4.2. Intramembrane lipid translocation and biological membranes 502
 4.2.1. Procaryotes ... 502
 4.2.2. Eucaryotes ... 503
 4.2.2.1. Transbilayer movement at the endoplasmic reticulum 503
 4.2.2.2. Transbilayer movement of phosphatidylcholine in erythrocytes 504
 4.2.2.3. Transbilayer movement of phosphatidylcholine in nucleated cells 505
 4.2.2.4. ATP dependent transbilayer movement of aminophospholipids at the plasma membrane of eukaryotic cells 506
 4.3. Intermembrane lipid transport 507
 4.3.1. Transport in procaryotes 507
 4.3.2. Transport in eucaryotes 510
 4.3.2.1. Phosphatidylcholine 510
 4.3.2.2. Phosphatidylethanolamine 512
 4.3.2.3. Phosphatidylerine 513
 4.3.2.4. Sphingolipids 515
 4.3.2.5. Cholesterol 517
 4.3.2.6. Phospholipid transfer proteins and phosphatidylinositol transport 518
5. Future directions .. 521
References .. 522

Chapter 18. Assembly of proteins into membranes

Reinhart A.F. Reithmeier

1. Organization of membrane proteins 525
 1.1. Classification of membrane proteins 525
 1.2. Membrane protein structure and energetics 528
 1.3. Assembly of membrane proteins 530
2. Secretion of proteins and the signal hypothesis 532
 2.1. The Palade secretion pathway 533
 2.2. The Blobel signal hypothesis 533
 2.3. In vitro translation and translocation systems 535
 2.4. The Milstein experiment: secreted proteins are made with an amino terminal signal sequence 538
 2.5. Signal sequences 540