Analytical Biogeography
AN INTEGRATED APPROACH TO THE STUDY
OF ANIMAL AND PLANT DISTRIBUTIONS

Edited by
A.A. MYERS
and
P.S. GILLER

London New York
CHAPMAN AND HALL
Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
</tbody>
</table>

Part I: Biogeographic Perspectives

1. **Process, Pattern and Scale in Biogeography**
 - A.A. Myers and P.S. Giller
 - 1. Introduction 3
 - 1.2 Processes 4
 - 1.3 Pattern analysis 5
 - 1.4 Scale 10

Part II: Biogeographic Patterns

2. **Biogeographic Patterns: A Perceptual Overview**
 - B.R. Rosen
 - 2.1 Introduction 23
 - 2.2 Patterns 24
 - 2.3 Approaches to biogeography 28
 - 2.4 Aims of biogeography: a question of levels 31
 - 2.5 Pure biogeography: the biogeographical system 36
 - 2.6 Levels, and their implications for historical patterns 52
 - 2.7 Summary and conclusions 53

3. **Species Diversity**
 - J.H. Brown
 - 3.1 Introduction 57
 - 3.2 Definition and measurement 58
 - 3.3 The patterns 60
 - 3.4 Hypotheses 68
 - 3.5 Evaluation of hypotheses 72
 - 3.6 Conclusions 88
4 RELATIONSHIP OF SPECIES NUMBER TO AREA, DISTANCE AND OTHER VARIABLES
M. Williamson

4.1 Introduction 91
4.2 Description of the phenomena 92
4.3 Explanation of the species-area effect 99
4.4 The nature of environmental heterogeneity 106
4.5 The effect of other variables on the species-area relationship 110
4.6 Consequences of the species-area effect 114

5 ENDEMISM: A BOTANICAL PERSPECTIVE
J. Major

5.1 Introduction 117
5.2 Biogeographical significance 118
5.3 A measure of endemism 120
5.4 Extent of and ecological variation in endemism 122
5.5 Endemism from various viewpoints 133
5.6 Endemism in contemporary biogeography 145
5.7 The future 146

PART III BIOLOGICAL PROCESSES IN BIOGEOGRAPHY
Introduction A.A. Myers and P.S. Giller 149

6 ADAPTATION
P.A. Parsons

6.1 What is adaptation? 165
6.2 Species' distributions 167
6.3 Comparisons among species 170
6.4 Mole rats — a transition to the genetic level 173
6.5 Variation within species 175
6.6 Adaptation and stressful environments 180
6.7 Conclusion 183
6.8 Summary 184

7 SPECIATION
N.H. Barton

7.1 Introduction 185
7.2 The nature of species 185
7.3 Modes of speciation 192
7.4 Biogeography and speciation 214
7.5 Conclusions 218
Contents

8 EXTINCTION
 L.G. Marshall

8.1 Introduction 219
8.2 Diversity 221
8.3 Turnover 224
8.4 Biases affecting extinction patterns 231
8.5 Extinction patterns 234
8.6 Extinction susceptibility 240
8.7 Extinction causes and processes 241
8.8 Conclusions 250

9 ECOLOGICAL INTERACTIONS
 T.W. Schoener

9.1 Introduction 255
9.2 Background 256
9.3 Community characteristics 269
9.4 Species' characteristics 284
9.5 Complementarities in species' distributions and abundances: bridging the community and individual-species approaches 288
9.6 Conclusion 295

PART IV BIOGEOGRAPHIC RECONSTRUCTION
 Introduction A.A. Myers and P.S. Giller 301

10 REFUGIA
 J.D. Lynch

10.1 Introduction 311
10.2 The Pleistocene rain forest refugia hypothesis 314
10.3 Testing strategies 324
10.4 Conclusions 341

11 PHYLOGENETIC BIOGEOGRAPHY
 L.Z. Brundin

11.1 Introduction 343
11.2 Phylogenetic biogeography 348
11.3 Vicariance biogeography 348
11.4 Dispersal biogeography 356
11.5 Significance of fossils to biogeographic hypothesis 366
11.6 Conclusions 368
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>371</td>
<td>12.1 Introduction</td>
</tr>
<tr>
<td>372</td>
<td>12.2 Cladistics and biogeography</td>
</tr>
<tr>
<td>377</td>
<td>12.3 Applications of cladistics to biogeography</td>
</tr>
<tr>
<td>394</td>
<td>12.4 Cladistic biogeography</td>
</tr>
<tr>
<td>404</td>
<td>12.5 Conclusions</td>
</tr>
<tr>
<td>405</td>
<td>13.1 Space-time and biogeography: philosophical considerations</td>
</tr>
<tr>
<td>407</td>
<td>13.2 Panbiogeography and phylogeny</td>
</tr>
<tr>
<td>409</td>
<td>13.3 Spatial analysis in biogeography</td>
</tr>
<tr>
<td>417</td>
<td>13.4 Dispersal, vicariance and panbiogeographic models of Southern Hemisphere and New Zealand biogeography: a comparison</td>
</tr>
<tr>
<td>434</td>
<td>13.5 Conclusions</td>
</tr>
<tr>
<td>437</td>
<td>14.1 Relevant parts of the biogeographical system and overview of methods</td>
</tr>
<tr>
<td>441</td>
<td>14.2 Constraints</td>
</tr>
<tr>
<td>449</td>
<td>14.3 Methods based on distributional change</td>
</tr>
<tr>
<td>469</td>
<td>14.4 Methods based on originations</td>
</tr>
<tr>
<td>473</td>
<td>14.5 Discussion</td>
</tr>
<tr>
<td>478</td>
<td>14.6 Conclusions</td>
</tr>
<tr>
<td>483</td>
<td>15.1 Introduction</td>
</tr>
<tr>
<td>487</td>
<td>15.2 An equilibrium theory</td>
</tr>
<tr>
<td>506</td>
<td>15.3 Implications of island biogeography theory</td>
</tr>
<tr>
<td>511</td>
<td>15.4 Summary</td>
</tr>
<tr>
<td>513</td>
<td>REFERENCES</td>
</tr>
<tr>
<td>569</td>
<td>INDEX</td>
</tr>
</tbody>
</table>