Vascular Plants as Epiphytes
Evolution and Ecophysiology

With 69 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong
Contents

1 Vascular Epiphytes: Setting the Scene
U. LÜTTEGE (With 9 Figures)

1.1 The Conquest of Space
1.2 Life-Forms
1.3 Importance: Biomass Production, Taxonomic Diversity, Economic Use
1.4 Stress
1.4.1 Environmental Gradients Along Stratum Heights in Rainforests
1.4.2 Stress Driving Evolution
1.4.3 Stress and Ecophysiology
1.4.4 Stress Determining Floristic Diversity
1.5 Interactions with Other Non-Host Organisms
1.6 Curiosity
References

2 The Evolution of Epiphytism
D.H. BENZING (With 10 Figures)

2.1 Ancestral Habitats: Dark and Moist or Exposed and Dry?
2.2 The Geologic Record of Epiphytism
2.3 The Systematic Occurrence of Epiphytes
2.4 Epiphytism as a Coherent Ecological Category
2.5 Classification of Epiphytes
2.6 Continuously-Supplied Versus Pulse-Supplied Epiphytes
2.7 Patterns of Origin
2.8 Predisposition and Phylogenetic Constraints
2.9 Historical Basis for Canopy Dependence
2.9.1 Ferns
2.9.2 Liliopsida as a Whole
2.9.3 Nonorchid Monocotyledons
2.9.4 Orchids
2.9.5 Dicotyledons
2.9.6 Ancestral Habitats
References
3 Carbon Dioxide Concentrating Mechanisms and the Evolution of CAM in Vascular Epiphytes

H. GRIFFITHS (With 2 Figures) .. 42

3.1 Introduction .. 42

3.2 Evolution and Characteristics of Biochemical and Biophysical CO$_2$ Concentrating Mechanisms 43

3.2.1 Carboxylase and Oxygenase Functions of RUBISCO .. 44

3.2.2 C_4 Photosynthesis as a CO$_2$ Concentrating Mechanism .. 47

3.2.3 CAM as a CO$_2$ Concentrating Mechanism .. 48

3.2.4 CO$_2$ Concentrating Mechanisms in Aquatic Plants .. 50

3.3 Ecophysiological Interactions in the Development of CO$_2$ Concentrating Mechanisms .. 52

3.3.1 Efficiency of Water Use ... 53

3.3.2 Carbon Economy ... 54

3.3.3 Nitrogen Economy ... 55

3.3.4 Responses to Photosynthetically Active Radiation .. 56

3.4 Phylogenetic Distribution of CAM in Vascular Epiphytes .. 58

3.4.1 Evolution of Epiphytism and CAM in the Polypodiaceae ... 60

3.4.2 Evolution of Epiphytism and CAM in the Monocotyledons ... 64

3.4.3 Evolution of Epiphytism and CAM in the Dicotyledons .. 65

3.5 Regulation and Expression of CAM in Vascular Epiphytes .. 68

3.5.1 Constitutive CAM ... 73

3.5.2 C_3-CAM Intermediates .. 74

3.6 Cost–Benefit Relationships of CO$_2$ Concentrating Mechanisms ... 76

3.6.1 Energetics of CO$_2$ Concentrating Mechanisms ... 76

3.6.2 C_3 and CAM Epiphyte Habitat Preference ... 78

3.7 Evolution of CAM and the Epiphytic Habit: Conclusions .. 79

References ... 81

4 Gas Exchange and Water Relations in Epiphytic Tropical Ferns

M. KLUGE, P.N. AVADHANI and C.J. GOH (With 10 Figures) .. 87

4.1 Introduction .. 87

4.2 The Ecophysiological Problem .. 87

4.3 Nest Ferns ... 88

4.3.1 Morphology .. 88

4.3.2 Gas Exchange of Nest Ferns in Situ ... 90

4.4 Xeromorphic Ferns ... 93

4.4.1 Anatomical and Physiological Adaptations ... 93

4.4.2 Performance of CAM Ferns Under Laboratory Conditions ... 95

4.4.2.1 Water Deficiency ... 96
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2.2 Temperature Requirements</td>
<td>97</td>
</tr>
<tr>
<td>4.4.2.3 Light Requirements</td>
<td>97</td>
</tr>
<tr>
<td>4.4.3 Performance of CAM Ferns in Situ</td>
<td>98</td>
</tr>
<tr>
<td>4.5 Water Use Efficiency of Epiphytic Ferns</td>
<td>104</td>
</tr>
<tr>
<td>4.6 Conclusions</td>
<td>105</td>
</tr>
<tr>
<td>References</td>
<td>107</td>
</tr>
<tr>
<td>5 Epiphytic Bromeliads</td>
<td>109</td>
</tr>
<tr>
<td>5.1 Ecological Range and Diversity of the Bromeliaceae</td>
<td>109</td>
</tr>
<tr>
<td>5.2 Bromeliad Systematics and Life-Forms</td>
<td>110</td>
</tr>
<tr>
<td>5.2.1 Systematics</td>
<td>110</td>
</tr>
<tr>
<td>5.2.2 Life-Forms</td>
<td>112</td>
</tr>
<tr>
<td>5.3 Carbon Assimilation</td>
<td>115</td>
</tr>
<tr>
<td>5.3.1 Occurrence of Crassulacean Acid Metabolism (CAM) and C3 Photosynthesis</td>
<td>115</td>
</tr>
<tr>
<td>5.3.2 Gas Exchange and Photosynthesis in CAM and C3 Bromeliads</td>
<td>117</td>
</tr>
<tr>
<td>5.3.3 Photosynthetic Responses to Light Intensity</td>
<td>120</td>
</tr>
<tr>
<td>5.3.4 Photosynthetic Ecology</td>
<td>123</td>
</tr>
<tr>
<td>5.4 Water Relations</td>
<td>126</td>
</tr>
<tr>
<td>5.5 Phylogenetic Ecology</td>
<td>129</td>
</tr>
<tr>
<td>References</td>
<td>134</td>
</tr>
<tr>
<td>6 Gas Exchange and Water Relations in Epiphytic Orchids</td>
<td>139</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>139</td>
</tr>
<tr>
<td>6.2 Terrestrial and Epiphytic Orchids</td>
<td>139</td>
</tr>
<tr>
<td>6.3 Growth Habit</td>
<td>140</td>
</tr>
<tr>
<td>6.4 The Epiphytic Habitat of Orchids</td>
<td>147</td>
</tr>
<tr>
<td>6.5 Gas Exchange Patterns as Related to Succulence in Epiphytic Orchids</td>
<td>148</td>
</tr>
<tr>
<td>6.6 In Situ Studies of CAM in Epiphytic Orchids</td>
<td>151</td>
</tr>
<tr>
<td>6.7 Light Requirements</td>
<td>154</td>
</tr>
<tr>
<td>6.8 Water Relations in Epiphytic Orchids</td>
<td>157</td>
</tr>
<tr>
<td>6.9 The Physiology of Aerial Roots</td>
<td>159</td>
</tr>
<tr>
<td>6.9.1 Water Relations</td>
<td>159</td>
</tr>
<tr>
<td>6.9.2 Gas Exchange</td>
<td>160</td>
</tr>
<tr>
<td>6.9.3 Mode of Photosynthesis</td>
<td>161</td>
</tr>
<tr>
<td>6.10 The Evolution of Epiphytism in Orchids</td>
<td>162</td>
</tr>
<tr>
<td>References</td>
<td>163</td>
</tr>
<tr>
<td>7 The Mineral Nutrition of Epiphytes</td>
<td>167</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>167</td>
</tr>
<tr>
<td>7.2 Introduction</td>
<td>167</td>
</tr>
</tbody>
</table>
7.2 Nutrient Sources in Forest Canopies 167
 7.2.1 Atmospheric Input ... 167
 7.2.2 Bark and Other Solid Media 170
7.3 Nutritional Modes .. 173
 7.3.1 Mutualism ... 173
 7.3.2 Hemiepiphytism ... 178
 7.3.3 Humus-Based Nutrition 178
 7.3.4 Unequivocal Carnivores 182
 7.3.5 Carnivorous Bromeliads 184
 7.3.6 Animal Assistance to Noncarnivores 185
 7.3.7 Atmospheric Nutrition 188
7.4 Does Scarcity of Nutrient Ions Limit Epiphyte Vigor? 189
7.5 Effects on Forest Economy .. 190
 7.5.1 Nutritional Piracy .. 190
 7.5.2 Relationship to Other Environmental Factors 193
7.6 Conclusions and Outlook ... 195
References ... 197

8 Epiphytic Associations with Ants
D.W. DAVIDSON and W.W. EPSTEIN (With 4 Figures) 200
8.1 Ubiquity and Sociality of Ants:
 Diversity of Ant-Epiphyte Relations 200
8.2 Opportunistic Associations of Epiphytes and Ants 201
 8.2.1 Carton as Epiphyte Substrate 201
 8.2.2 Fitness Outcomes and Limits to Specialization
 and Abundance .. 204
8.3 Myrmecophytic Epiphytes .. 205
 8.3.1 Benefits to Ants ... 205
 8.3.2 Benefits to Plants .. 212
 8.3.3 Complex Interaction Networks 216
 8.3.4 Epiphytes, Ants and Host Trees 218
 8.3.5 Habitat Quality and Ant-Epiphyte Associations 219
8.4 Origins of Myrmecophytic Epiphytes 223
8.5 Summary and Conclusions .. 228
References ... 229

9 The Systematic Distribution of Vascular Epiphytes
W.J. KRESS .. 234
9.1 Introduction .. 234
9.2 Sources of Compilation and Methods of Classification
 of Epiphytes .. 235
9.3 Numbers of Epiphytes and Taxonomic Distribution 256
9.4 Our Knowledge of Epiphytes and Perspectives 259
References ... 261

Subject Index .. 263
Contributors

You will find the addresses at the beginning of the respective contribution

Avadhani, P. N. 87
Benzing, D. H. 15, 167
Davidson, D. W. 200
Epstein, W. W. 200
Goh, C. J. 87, 139
Griffiths, H. 42
Kluge, M. 87, 139
Kress, W. J. 234
Lüttge, U. 1
Smith, J. A. C. 109