Contents

Contributors xi

Preface xiii

PART 1 An overview of evolutionary biology 1

1 Essays in comparative evolution. The need for evolutionary comparisons 3
G. LEDYARD STEBBINS
1.1 Introduction 3
1.2 The biological universals that govern evolution 4
1.3 The most significant kinds of comparisons 8
1.4 Summary and conclusions 17
1.5 References 19

PART 2 Molecular evolution and species phylogeny 21

2 Evolution and variation in plant chloroplast and mitochondrial genomes 23
C. WILLIAM BIRKY, JR
2.1 Introduction 23
2.2 Tempos and modes of organelle evolution 24
2.3 Intraspecific diversity of organelle genomes 38
2.4 Mechanics and quantitative theory for sequence diversity and evolution in organelles 40
2.5 Acknowledgements 46
2.6 References 46
Contents

3 Organization and evolution of sequences in the plant nuclear genome
STEVEN D. TANKSLEY and ERAN PICHERSKY
3.1 DNA content in plants | 55
3.2 Sequence organization in the nucleus 57
3.3 Mechanisms of repeated DNA evolution 61
3.4 Coding sequences 63
3.5 Gene families 69
3.6 Concluding remarks 79
3.7 References 79

4 Onagraceae as a model of plant evolution
PETER H. RAVEN
4.1 Introduction 85
4.2 Relationships with other families 87
4.3 Age and distinctiveness of Onagraceae 88
4.4 Patterns of relationship in Onagraceae 89
4.5 Geographical distributions and history 91
4.6 Reproductive biology 95
4.7 Chromosomal evolution 97
4.8 Patterns of evolution in Onagraceae 103
4.9 References 105

5 Phylogenetic aspects of the evolution of self-pollination
ROBERT WYATT
5.1 Introduction 109
5.2 Phylogenetic reconstruction in *Arenaria* 110
5.3 Phylogenetic studies in other groups 120
5.4 General considerations 124
5.5 Conclusion 127
5.6 Acknowledgements 128
5.7 References 128

6 Evolution of mating systems in cultivated plants
CHARLES M. RICK
6.1 Introduction 133
6.2 Intensified inbreeding in naturally self-pollinated species 135
6.3 Switch from self-incompatibility to self-compatibility 137
6.4 Changes in monoecious species 138
6.5 Conversion of selfing species to allogamy 139
6.6 Other crop groups 141
6.7 Rates of change 143
Contents

6.8 Conclusions 144
6.9 References 145

Editors' commentary on Part 2 149

PART 3 Development and evolution 155

7 Ontogeny and phylogeny: phytohormones as indicators of labile changes 157
TSVI SACHS
7.1 The problem: could ontogeny constrain the evolution of form? 157
7.2 Phytohormone changes as convenient models 158
7.3 Discussion: generalizations concerning the evolution of form 170
7.4 The need for the study of comparative morphogenesis 173
7.5 References 174

Editors' commentary on Part 3 177

PART 4 Adaptation: two perspectives 183

8 Biophysical limitations on plant form and evolution 185
KARL J. NIKLAS
8.1 Introduction 185
8.2 Basic requirements 187
8.3 Long-term trends in plant evolution 211
8.4 Adaptation and Ganong's principle 214
8.5 References 217

9 Evolution and adaptation in Encelia (Asteraceae) 221
JAMES R. EHLERINGER and CURTIS CLARK
9.1 Introduction 221
9.2 Adaptation to environment 221
9.3 Encelia: a model system for the study of adaptation 224
9.4 Evolution of adaptations within the genus 244
9.5 References 246

Editors' commentary on Part 4 249

PART 5 Genetics and ecology of populations 253

10 Natural selection of flower color polymorphisms in morning glory populations 255
MICHAEL T. CLEGG and BRYAN K. EPPERSON
10.1 Introduction 255
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2 The evolution of the mating modifier genes</td>
<td>257</td>
</tr>
<tr>
<td>10.3 Operational definition of a population</td>
<td>261</td>
</tr>
<tr>
<td>10.4 Mating system estimation</td>
<td>263</td>
</tr>
<tr>
<td>10.5 Conclusions</td>
<td>270</td>
</tr>
<tr>
<td>10.6 Acknowledgements</td>
<td>271</td>
</tr>
<tr>
<td>10.7 References</td>
<td>271</td>
</tr>
<tr>
<td>11 Genetic variation and environmental variation: expectations and experiments</td>
<td>275</td>
</tr>
<tr>
<td>JANIS ANTONOVICS, NORMAN C. ELLSTRAND and ROBERT N. BRANDON</td>
<td></td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>275</td>
</tr>
<tr>
<td>11.2 A straw-man</td>
<td>277</td>
</tr>
<tr>
<td>11.3 Towards word-models</td>
<td>278</td>
</tr>
<tr>
<td>11.4 The concept of the environment</td>
<td>279</td>
</tr>
<tr>
<td>11.5 Away from word-models</td>
<td>282</td>
</tr>
<tr>
<td>11.6 An experiment</td>
<td>286</td>
</tr>
<tr>
<td>11.7 Integration</td>
<td>298</td>
</tr>
<tr>
<td>11.8 Acknowledgements</td>
<td>300</td>
</tr>
<tr>
<td>11.9 References</td>
<td>301</td>
</tr>
<tr>
<td>12 Local differentiation and the breeding structure of plant populations</td>
<td>305</td>
</tr>
<tr>
<td>DONALD A. LEVIN</td>
<td></td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>305</td>
</tr>
<tr>
<td>12.2 Breeding structure of populations</td>
<td>306</td>
</tr>
<tr>
<td>12.3 Random differentiation in continuous populations</td>
<td>309</td>
</tr>
<tr>
<td>12.4 Random differentiation in discontinuous populations</td>
<td>311</td>
</tr>
<tr>
<td>12.5 Inferences about migration rates from genetic structure</td>
<td>315</td>
</tr>
<tr>
<td>12.6 Gene flow and selective differentiation</td>
<td>316</td>
</tr>
<tr>
<td>12.7 The spread of advantageous genes</td>
<td>321</td>
</tr>
<tr>
<td>12.8 Conclusions</td>
<td>322</td>
</tr>
<tr>
<td>12.9 References</td>
<td>323</td>
</tr>
</tbody>
</table>

Editors' commentary on Part 5

PART 6 Life histories in a community context

13 Vegetational mosaics, plant–animal interactions and resources for plant growth

R. L. JEFFERIES

13.1 Introduction

13.2 Lesser snow geese and the effects of foraging on the vegetation of salt marshes and freshwater marshes

331

339

341

343
Contents

13.3 The herbivore optimization model and the net primary production of vegetation 346
13.4 Population differentiation of Puccinellia phryganodes 352
13.5 Resource availability, patch dynamics and community structure 357
13.6 Comparisons with other ecosystems 361
13.7 Conclusions 362
13.8 Acknowledgements 364
13.9 References 365

14 The C-S-R model of primary plant strategies – origins, implications and tests 371
J. PHILIP GRIME
14.1 Introduction 371
14.2 Data collection 372
14.3 The initial hypothesis 373
14.4 The concept of strategies 376
14.5 Ruderals 379
14.6 Competitors 379
14.7 Stress tolerators 381
14.8 Implications for community dynamics 382
14.9 Tests and refinements of the C-S-R model 386
14.10 Acknowledgements 389
14.11 References 389

Editors' commentary on Part 6 395

Epilogue 401

Index 405