Liposomes
a practical approach

Edited by
R R C New
Formerly Departments of Parasitology and Tropical Medicine, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK

Current address: Biocompatibles Ltd, Brunel Science Park, Kingston Lane, Uxbridge, UB8 3PQ, UK
Contents

ABBREVIATIONS xv

1. INTRODUCTION 1
R.R.C.New

Aim of Book 1
Structure of Liposomes 1
Chemical constituents 3
Physical structure 23
Tailoring Liposomes to Specific Applications 27
Considerations related to liposome content 27
Considerations related to the desired behaviour of liposomes 29
Tailoring Applications to Specific Liposomes 29
Natural targeting 30
Directed targeting 31
Guide to Following Chapters 31

2. PREPARATION OF LIPOSOMES 33
R.R.C.New

Introduction 33
Handling of Lipids 33
Storage 33
Measurement 34
Drying down 34
Methods of Preparation 36
Mechanical dispersion 36
Hand-shaken multilamellar vesicles 37
Non-shaken vesicles 39
Pro-liposomes 40
Freeze-drying 42
Micro-emulsification liposomes (MELs) 43
Sonicated vesicles (SUVs) 44
French pressure cell liposomes 48
Membrane extrusion liposomes 52
Dried-reconstituted vesicles (DRVs) 56
Freeze-thaw sonication (FTS) method 58
pH-induced vesiculation 60
Calcium-induced fusion 61
Solvent dispersion 62
Ethanol injection 63
Ether injection 64
Water-in-organic phase 66
Double emulsion vesicles 67

ix
3. CHARACTERIZATION OF LIPOSOMES

R.R.C. New

Introduction 105

Chemical Analysis 105

Quantitative determination of phospholipid 105
Thin-layer chromatography of lipids 109
Quantitation of lysolecithin: densitometry 112
Estimation of phospholipid oxidation 113
Analysis of cholesterol 122
Quantitation of α-tocopherol: HPLC 124

Properties of Intact Liposomes 125

Determination of percentage capture 125
Determination of percentage release 128
Determination of entrapped volume 137
Lamellarity 137

Size Determination of Liposomes 139

Negative stain electron microscopy 140
Sizing by photon correlation spectroscopy (laser light scattering) 154

References 160
4. COVALENT ATTACHMENT OF PROTEINS TO LIPOSOMES 163

Introduction 163
SPDP method 165
Reagents 165
Procedure 165
Modifications of the SPDP Method When Using SMPB 168
Factors Affecting Conjugation Efficiency 169
Concentration of reduced protein and lipid 169
Presence of cholesterol in the liposome membrane 170
Aggregation during conjugation 170
Comparison of Protein Thiolation Methods 171
SAMSA/SATA modification of proteins 172
Comparison of Liposome Thiolation Methods 173
Derivatization of Liposomes in situ 173
Thio-derivatives 173
Formation of carbonyl groups 174
Alternative Conjugation Procedures 176
Employing liposomal carboxyl groups 176
Employment of protein-bound carboxyl groups 179
Non-protein Conjugates 181
Anchor Groups Other Than PE 182
References 182

5. PHYSICAL METHODS OF STUDY 183
G.R.Jones and A.R.Cossins

Introduction 183
Fluorescence Techniques in Liposome Research 184
Fusion of liposomes 184
Membrane fluidity 186
pH of the liposome lumen 193
Membrane potential 194
Principles Behind the Use of Fluorescence Techniques 195
Basic Techniques and Their Applications 197
Instrumentation 197
Cuvette care 198
Fluorescent probes 199
Reagents and lipids 201
Spectral changes 201
Quenching 202
Excimer formation 203
Energy transfer 204
Polarization of fluorescence 205
Advanced Techniques
- Time-resolved fluorescence 211
- Measurement of fluorescence lifetimes and time-resolved fluorescence anisotropy 212
- Measurement of liposome diffusion processes in the microsecond to second time-scale 217

Light Scattering By Liposomes
- Apparent absorption 217
- Scattered light 218
- Instrumentation 219

References 219

6. LIPOSOMES IN BIOLOGICAL SYSTEMS 221

Introduction	221
Interactions of Liposomes with Cells	221
Cellular interactions	221
Anatomical considerations	225
Site-selective delivery of liposomal contents—determination by liposome composition	228
Use of Markers to Determine Fate of Liposome Components	231
Differentiation between lipid exchange and association	231
Differentiation between adsorption and internalization	232
Differentiation between fusion and phagocytosis	233
Differentiation between lysosomal and cytoplasmic localization	234
Cellular availability (differentiation between intact and degraded liposomes)	235
Whole body distribution	236
Retrieval of Liposome Components	237
Isolation from plasma	237
Tissue fractionation	239
Subcellular fractionation	243

References 251

APPENDIX I Miscellaneous methods 253

Purification of Solvents	253
Purification of Egg Yolk Phosphatidyl Choline	253
Recrystallization of Cholesterol	255
Purification of Carboxyfluorescein	255
Liposome Extraction Methods	256
Preparation of Sendai Virus	258
Hydrogenation of Lecithin	259
Preparation of N-Hydroxysuccinimide Esters of Fatty Acids	261
Preparation of Cholesterol Alkyl Ethers	261
Preparation of Samples for Liquid Scintillation Counting	262
Labelling of Pre-formed Liposomes with 99mTc
Paper Chromatography of Labelled Liposomes
Radio-iodination of Cholesterol Aniline: ICl Method

APPENDIX II Manufacturers and Suppliers

APPENDIX III Standard Texts on Liposomes and Phospholipid Membranes

APPENDIX IV Key References for Applications of Liposomes

INDEX