NITROGEN AS
AN ECOLOGICAL FACTOR

THE 22ND SYMPOSIUM OF
THE BRITISH ECOLOGICAL SOCIETY
OXFORD 1981

EDITED BY
J. A. LEE
Department of Botany,
The University, Manchester M13 9PL

S. McNEILL
Department of Pure and Applied Biology,
Imperial College of Science and Technology,
Silwood Park, Ascot, Berkshire SL5 7PY

AND

I. H. RORISON
Unit of Comparative Plant Ecology (NERC),
Department of Botany, The University,
Sheffield S10 2TN

BLACKWELL SCIENTIFIC PUBLICATIONS
OXFORD LONDON EDINBURGH
BOSTON MELBOURNE
CONTENTS

Preface ix

1 Nitrogen cycling 1
W. D. P. STEWART, T. PRESTON, A. N. RAI, and P. ROWELL,
University of Dundee

2 Adaptive variation in legume nodule physiology resulting from
host–rhizobial interactions 29
JANET I. SPRENT, University of Dundee

3 The role of lichens in the nitrogen economy of subarctic
woodlands: nitrogen loss from the nitrogen-fixing lichen
Stereocaulon paschale during rainfall 43
P. D. CRITTENDEN, University of Sheffield

4 The significance of ectomycorrhizas in the nitrogen cycle 69
I. J. ALEXANDER, University of Aberdeen

5 Nitrogen as a limiting factor in plant communities 95
J. A. LEE, R. HARMER and R. IGNACIUK, University of Manchester

6 Nitrogen and the development of ecosystems 113
R. H. MARRS*, R. D. ROBERTS†, R. A. SKEFFINGTON‡, and
A. D. BRADSHAW, University of Liverpool; *Institute of Terrestrial
Ecology, Monks Wood Experimental Station, Huntingdon;
†University of Essex; and ‡Central Electricity Generating Board,
Leatherhead, Surrey

7 The relationship between the nitrogen metabolism of Plantago
species and the characteristics of the environment 137
J. W. WOLDENDORP, Instituut voor Oecologisch Onderzoek,
Arnhem

8 Studies of nitrate utilization by the dominant species of regrowth
vegetation of tropical West Africa: a Nigerian example 167
G. R. STEWART and T. O. OREBAMJO*, Birkbeck College, University
of London, and *University of Lagos, Nigeria

v
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Nitrogen source, temperature and the growth of herbaceous plants</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>I. H. RORISON, J. H. PETERKIN*, and D. T. CLARKSON†, University of Sheffield; †ARC Letcombe Laboratory, Wantage, and *Birkbeck College, University of London</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Thermal adaptation of nitrate transport and assimilation in roots?</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>D. T. CLARKSON and CELIAE. DEANE-DRUMMOND*, ARC Letcombe Laboratory, Wantage and *University of Reading</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Patterns of nitrogen metabolism in higher plants and their ecological significance</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>J. S. PATE, University of Western Australia</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>The role of nitrogen in the ecology of grassland Auchenorrynchha</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>R. A. PRESTIDGE* and S. MCNEILL, Imperial College, London and *Ruakura Agricultural Research Centre, Hamilton, New Zealand</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Nitrogen in a crop-pest interaction: cereal aphids 1979</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>R. KOWALSKI and P. E. VISser, J.A. Pye Research Centre, Haughley Green, Suffolk</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>The effect of foliar nutrients upon growth and feeding of a lepidopteran larva</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>G. R. W. WINT, University of Oxford</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Nitrogen in defence against insects</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>E. A. BERNAYS, Centre for Overseas Pest Research, London</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Large herbivores and food quality</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>MALCOLM COE, University of Oxford</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Changes in nitrogen compounds in fish and their ecological consequences</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>Z. FISCHER, Institute of Ecology, Polish Academy of Sciences</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>The utilization of nitrogen resources by termites (Isoptera)</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>N. M. COLLINS, International Centre of Insect Physiology and Ecology, Nairobi, Kenya</td>
<td></td>
</tr>
</tbody>
</table>
Contents

19 Interactions between soil arthropods and microorganisms in carbon, nitrogen and mineral element fluxes from decomposing leaf litter

J. M. ANDERSON and P. INESON, University of Exeter

20 Abstracts of poster papers

Index