Contents

PREFACE ix

1 INVESTIGATING SURVIVAL 1
 1.1 Introduction 1
 1.2 Adaptation 3
 1.3 Survival in a changing environment 5
 1.4 Environmental and physiological tolerance 7
 1.5 Distribution and survival 8
 1.6 Conclusions 9

2 LIMITS TO PLANT DISTRIBUTIONS 13
 2.1 Biogeographical boundaries 13
 2.1.1 Allopatric speciation 13
 2.1.2 Sympatric speciation 16
 2.1.3 Parapatric speciation 16
 2.2 Ecological boundaries 20
 2.3 Climatic boundaries 21
 2.3.1 Chilling injury 22
 2.3.2 Freezing injury and cryoprotection 26
 2.3.3 Limiting temperature combinations 31
 2.3.4 Deficiencies and excesses in summer warmth 34
 2.4 Distribution limits to plant life forms 35
 2.4.1 Annual species 40
 2.4.2 Perennial species 41
 2.4.3 Woody deciduous and evergreen species 41
 2.5 Identity of views on plant form over 2000 years 43
 2.6 Conclusions 43

3 PLANT SURVIVAL IN THE ARCTIC 47
 3.1 The Arctic flora 48
 3.2 Arctic habitats and plant form 52
 3.2.1 Low and high Arctic 52
 3.2.2 Wind exposure and snow depth 52
 3.2.3 Soil drainage 54
 3.2.4 Temperature amelioration 54
 3.2.5 Slope and aspect 55
 3.3 Carbon balance 57
 3.3.1 Carbon allocation and northern limits to distribution 57
 3.3.2 Carbon allocation and southern limits to distribution 60
 3.4 Nutrition 63
 3.5 Reproduction 68
 3.5.1 Polyploidy and apomixis in cold climate vegetation 71
 3.5.2 Dioecism in Arctic vegetation 73
 3.6 Conclusions 75
4 POLAR AND ALTITUDINAL LIMITS TO TREE SURVIVAL 77

4.1 Timber-line geography 77
4.2 Tropical timber-lines 77
4.3 Temperate timber-lines 80
 4.3.1 Abrupt timber-lines 80
 4.3.2 Ecotone timber-lines 83
 4.3.3 Deciduous and evergreen timber-lines 87
4.4 Climate and timber-lines 89
 4.4.1 Temperature 89
 4.4.2 Wind, oceanicity and treesurvival 91
4.5 Tree physiology at the timber-line 93
 4.5.1 Reproduction 94
 4.5.2 Tree growth in relation to altitude 97
 4.5.3 Carbon balance 98
 4.5.4 Desiccation resistance 100
4.6 Conclusions 103

5 THE ANAEROBIC RETREAT 105

5.1 Ecological advantages of surviving without oxygen 105
5.2 Plant survival in oxygen-deficient soils 107
 5.2.1 Avoidance of anoxia 110
 5.2.2 Tolerance of anoxia 113
5.3 Causes of anoxic and post-anoxic injury 117
 5.3.1 Rapid cellular malfunction under anoxia 119
 5.3.2 Ethanol and carbon dioxide toxicity 120
 5.3.3 Cyanogenesis 121
 5.3.4 Death by anaerobic starvation 122
 5.3.5 Potentially harmful post-anoxic metabolites 124
 5.3.6 Superoxide dismutase and the reduction of post-anoxic injury 125
5.4 Soil toxins 126
 5.4.1 Manganese and ferrous ions 126
 5.4.2 Sulphide toxicity 128
 5.4.3 Hormonal balance 128
5.5 Conclusions 129

6 SURVIVAL IN COASTAL HABITATS 131

6.1 Hazards of the maritime environment 131
6.2 Succession and adaptation in sand dunes 131
 6.2.1 Foreshore and embryo dune development 131
 6.2.2 Mobile and fixed dunes 135
 6.2.3 Drought and heat tolerance in sand dune vegetation 137
 6.2.4 Stress metabolites in sand dune plants 139
6.3 Dune slack communities 142
6.4 Salt marshes 145
6.5 Surviving salt exposure 148
 6.5.1 Surviving salt spray in foreshore and dune habitats 149
 6.5.2 The control of tissue salt content by exclusion, secretion, succulence and passive removal 149
 6.5.3 Adjustment to osmotic stress in saline soils 153
6.6 Conclusions 156
7 SURVIVAL ON THE FOREST FLOOR 159
7.1 The forest environment 159
7.2 Establishment on the forest floor 164
7.3 Growth and survival in shaded habitats 166
 7.3.1 Adaptations to low fluence rates 166
 7.3.2 Shade and carbon dioxide fixation 167
 7.3.3 Chlorophyll content in shade leaves 169
 7.3.4 Leaf size and pubescence 171
7.4 Morphogenic effects of shade 171
 7.4.1 Light quality and extension growth 171
 7.4.2 Shade and total plant form 173
7.5 Mineral nutrition in shaded habitats 175
7.6 Conclusions 175

8 DROUGHT SURVIVAL 177
8.1 Plant form and drought tolerance 177
8.2 Plant reactions to water stress 180
 8.2.1 Drought-avoiding species 180
 8.2.2 Poikilohydric xerophytes 182
 8.2.3 Homoiohydric xerophytes 184
 8.2.4 Succulent xerophytes 185
8.3 Drought tolerance with tissue dehydration 186
 8.3.1 Theories of drought tolerance 186
 8.3.2 Drought tolerance in growing plants 188
 8.3.3 Drought tolerance in germinating seeds 189
8.4 Drought avoidance and turgor maintenance 191
 8.4.1 Water uptake 191
 8.4.2 Stomatal control under water stress 193
 8.4.3 Cuticular adaptations to water stress 196
 8.4.4 Osmoregulation and stress metabolites 197
 8.4.5 Diurnal variation in CO₂ uptake 198
8.5 The isotope discrimination ratio and photosynthesis in xerophytes 200
8.6 Conclusions 202

9 SURVIVING PREDATION 205
9.1 Plant responses to predation 205
9.2 Host specificity 207
9.3 Secondary metabolites and plant palatability 209
 9.3.1 Alkaloids 210
 9.3.2 Toxic amino acids 214
 9.3.3 Toxic amines and peptides 216
 9.3.4 Proteins and plant protection 216
 9.3.5 Cyanogenic and nitro-glycosides 217
 9.3.6 Coumarin glycosides 220
 9.3.7 Steroid and triterpenoid glycosides 221
 9.3.8 Irritant oils 222
 9.3.9 Organic acids 224
 9.3.10 Phenolic acids and tannins 224
 9.3.11 Volatile oils 226
9.4 Hormonal defences 227
9.5 Ecological consequences of predator protection 230
9.6 Conclusions 231
Contents

10 SURVIVING POLLUTION 235
 10.1 Introduction 235
 10.2 Gaseous pollutants 236
 10.2.1 Sulphur dioxide 238
 10.2.2 Carbon dioxide 240
 10.2.3 Photochemical smog 241
 10.2.4 Fluorides 246
 10.3 Water and soil-borne pollutants 247
 10.3.1 Acid rain 247
 10.3.2 Forest decline 253
 10.3.3 Hydrocarbons 258
 10.3.4 Metal pollutants 258
 10.3.5 Evolution of metal tolerance 261
 10.4 Plant survival after a nuclear war 263

References 265

Index 283