Analysis of Drugs in Biological Fluids

Author

Joseph Chamberlain
Analytical Department
Hoechst Pharmaceutical Research Laboratories
Walton Manor
Milton Keynes, Buckinghamshire
United Kingdom
TABLE OF CONTENTS

Chapter 1

Why Analyze Drugs in Biological Fluids?

1. Introduction

II. Drugs in Use

A. Forensic Toxicology

B. Overdosage

C. Drug Monitoring

III. Drugs in Research and Development

A. Pharmacology

B. Toxicology

C. Phase I Clinical Testing

D. Metabolism

E. Pharmacokinetics

F. Formulation Development

G. Phase II Clinical Testing

H. Compliance

I. Pharmacodynamics

References

Chapter 2

Special Problems with Biological Fluids

1. Introduction

II. Properties of Particular Fluids

A. Blood

B. Serum and Plasma

C. Urine

III. Drug Metabolites

A. Phase I Metabolism

1. Oxidation

2. Reduction

3. Hydrolysis

B. Phase II Metabolism

1. Glucuronidation

2. Sulfation

3. Acetylation

C. Significance of Metabolite Formation for Analysis

IV. Presence of Other Drugs

V. Hydrolysis of Conjugates

References
Chapter 3
Spectroscopy and Fluorimetry

I. Introduction

II. Spectrophotometry
A. Direct Measurements
B. Colorimetric Measurements
1. Acetaminophen in Serum
2. Procainamide in Plasma
3. Isoniazid in Urine and Plasma
4. Folin-Ciocalteau Reagent
5. Reaction with Aromatic Aldehydes
C. Other Absorptiometric Techniques
1. Difference Spectra
2. Derivative Spectroscopy

III. Fluorimetry
A. Principles
B. Direct Measurements
1. Triamterene
2. Furosemide
3. Quinine
4. Indomethacin
5. Imipramine
6. Propranolol
7. Butaperazine
8. Flecainide
9. Lysergic Acid Diethylamide (LSD)
C. Induced Fluorescence
1. Chemically Induced Fluorescence
2. Fluorescence Induced by Irradiation
3. Coupling to Fluorescent Reagents
 a. Fluorescamine
 b. Dansyl Reagents
 c. DBD-Chloride

References

Chapter 4
Chromatographic Methods of Analysis

I. Introduction

II. Principles of Chromatography

III. Paper Chromatography

IV. Thin-Layer Chromatography
A. Introduction
B. Qualitative Screening
C. Metabolism Studies
D. Quantitative Analysis
V. Gas Chromatography
 A. Preparation of Samples for Gas Chromatography
 B. Stationary Phases
 C. Detectors
 1. Flame Ionization Detector
 2. Electron Capture Detection
 3. Nitrogen-Specific Detector
 4. Mass Spectrometry

VI. HPLC
 A. Development of HPLC
 B. Column Packings
 C. Mobile Phases
 D. Detectors
 1. Ultraviolet Absorption Detectors
 2. Fluorescence
 3. Electrochemistry
 4. Mass Spectrometry
 5. Multiple Diode Arrays

References

Chapter 5
Saturation Analysis: Radioimmunoassays and Other Ligand Assays
I. Introduction
II. Radioimmunoassay of Drugs
 A. Selection of Conjugate
 B. Raising Antibodies
 C. The Radiolabel
 D. Optimization of Assay
 E. The Separation Step
 F. Special Problems and Pitfalls in Radioimmunoassay of Drugs
III. Immunoassays Using a Non-Isotopic Label
 A. Fluorescence Label
 B. Enzyme Label
 C. Spin Label
IV. Radioreceptor Assays for Drugs
 A. Benzodiazepine Receptor Assays
 B. Neuroleptic Receptor Assays

References

Chapter 6
Miscellaneous Methods of Analysis
I. Introduction
II. Microbiological Methods
III. Polarography