Contents

SECTION I INTRODUCTION AND METABOLISM

1. Introduction to the Eicosanoids 1
2. Metabolism of Prostaglandins and Lipoxygenase Products: Relevance for Eicosanoid Assay 5

SECTION II SAMPLING AND EXTRACTION

3. Tissue Sampling and Preparation 29
4. Extraction of Eicosanoids from Biological Samples 45

SECTION III PHYSICO-CHEMICAL METHODS

5. Thin-Layer Chromatography (including Radio Thin-Layer Chromatography and Autoradiography) of Prostaglandins and Related Compounds 53
6. High-Pressure Liquid Chromatography in the Analysis of Arachidonic Acid Metabolites 75

SECTION IV PHARMACOLOGICAL AND IMMUNOASSAYS

8. Measurement of Prostaglandins, Thromboxanes and Leukotrienes by Smooth Muscle Bioassay 143
9. Aggregometry Techniques for Prostanoid Study and Evaluation 151
10. Radioimmunoassay of Eicosanoids 167
11. Enzyme Immunoassay 197

SECTION V ENZYMOLOGY AND LIPID PEROXIDATION

14. Lipid Peroxidation 243

SECTION VI RELATED TECHNIQUES

15. Quantitative Measurement of Arachidonic Acid in Tissues or Fluids 259
16. Methods in Prostanoid Receptor Classification 267
17. Paf-Acether (Platelet-Activating Factor) 305

APPENDIX EICOSANOIDS: STRUCTURE, AVAILABILITY, STORAGE AND STABILITY 313
ABBREVIATIONS

1. INTRODUCTION TO THE EICOSANOIDS
 T.F. Slater and R.G. McDonald-Gibson
 General Background
 Nomenclature, Structure and Biosynthesis
 References

2. METABOLISM OF PROSTAGLANDINS AND LIPOOXYGENASE PRODUCTS: RELEVANCE FOR EICOSANOID
 ASSAY
 E. Granström and M. Kumlin
 Introduction: The 'What, When, and Where' Problem
 Metabolism of Prostaglandins
 General comments
 Individual metabolic fates of the prostaglandins
 Metabolism of Thromboxanes
 General comments
 Metabolism of thromboxane B₂
 Interconversions of Prostaglandins and Related Compounds
 Metabolism of Lipoxygenase Products
 General comments
 Metabolism of hydroperoxy acids and monohydroxy acids
 Metabolism of the epoxy intermediates, LTA₄ and 14,15-LTA₂
 Metabolism of dihydroxy acids including LTB₄
 Metabolism of the peptido-leukotrienes: LTC₄, LTD₄ and LTE₄
 Conclusions
 References

3. TISSUE SAMPLING AND PREPARATION
 C. Benedetto and T.F. Slater
 Introduction
 Sampling Blood and Urine
 Blood
 Urine
 Sampling Solid Tissues and Intracellular Fractions
 Endogenous levels in solid tissue in situ
 Sampling cells and intracellular suspensions
 Tissue Preparations
 Perfused organs
 Tissue slices and rings
 Isolated cells
 Homogenizing Tissue Samples
4. EXTRACTION OF EICOSANOIDS FROM BIOLOGICAL SAMPLES

S. Nigam

Introduction

Methods of Extraction

Organic solvent extraction and open column chromatography
Powell method for extraction of eicosanoids other than peptido-leukotrienes from biological samples using octadecysilyl (ODS)-silica
Extraction of peptido-leukotrienes
Recoveries of Standard Eicosanoids from Biological Samples
General Considerations on the Extraction of Eicosanoids
Materials required
Extraction device and dry-down apparatus
Preparation of the sample
Influence of pH on the extraction
Precautions required for assaying eicosanoids in biological samples
Acknowledgements
References

5. THIN-LAYER CHROMATOGRAPHY (INCLUDING RADIO THIN-LAYER CHROMATOGRAPHY AND AUTORADIOGRAPHY) OF PROSTAGLANDINS AND RELATED COMPOUNDS

J. S. Hurst, S. Flatman and R. G. McDonald-Gibson

Introduction

Equipment
Thin-layer plates
Applicators
Solvents
Development chambers (tanks)
Reagent-sprayers
UV-cabinets
Procedures
Concentration and preparation of the sample
Preparation of the plate
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marking of the plate</td>
<td>56</td>
</tr>
<tr>
<td>Application of standards and sample</td>
<td>57</td>
</tr>
<tr>
<td>Development</td>
<td>58</td>
</tr>
<tr>
<td>Detection</td>
<td>59</td>
</tr>
<tr>
<td>Solvent Systems</td>
<td>62</td>
</tr>
<tr>
<td>A9 system</td>
<td>62</td>
</tr>
<tr>
<td>A1 system</td>
<td>63</td>
</tr>
<tr>
<td>Systems for lipoxygenase metabolites</td>
<td>63</td>
</tr>
<tr>
<td>Other solvent systems</td>
<td>63</td>
</tr>
<tr>
<td>Elution and Recovery</td>
<td>64</td>
</tr>
<tr>
<td>Other Thin-Layer Chromatography Techniques</td>
<td>65</td>
</tr>
<tr>
<td>Two dimensional t.l.c.</td>
<td>65</td>
</tr>
<tr>
<td>High performance thin-layer chromatography</td>
<td>65</td>
</tr>
<tr>
<td>Radio-TLC</td>
<td>66</td>
</tr>
<tr>
<td>Experimental details</td>
<td>66</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>66</td>
</tr>
<tr>
<td>Quantitation</td>
<td>68</td>
</tr>
<tr>
<td>Limitations</td>
<td>69</td>
</tr>
<tr>
<td>Autoradiography</td>
<td>72</td>
</tr>
<tr>
<td>References</td>
<td>73</td>
</tr>
</tbody>
</table>

6. HIGH-PRESSURE LIQUID CHROMATOGRAPHY IN THE ANALYSIS OF ARACHIDONIC ACID METABOLITES 75
W.S.Powell

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>75</td>
</tr>
<tr>
<td>Chromatographic Behaviour of Arachidonic Acid Metabolites</td>
<td>76</td>
</tr>
<tr>
<td>Preparation of Samples</td>
<td>76</td>
</tr>
<tr>
<td>Eicosanoids other than peptido-leukotrienes</td>
<td>76</td>
</tr>
<tr>
<td>Precolumn extraction of samples containing peptido-leukotrienes</td>
<td>77</td>
</tr>
<tr>
<td>Detection of Eicosanoids</td>
<td>79</td>
</tr>
<tr>
<td>UV-absorbance</td>
<td>79</td>
</tr>
<tr>
<td>Radioactivity</td>
<td>79</td>
</tr>
<tr>
<td>Normal-Phase High-Pressure Liquid Chromatography</td>
<td>80</td>
</tr>
<tr>
<td>Separation of cyclo-oxygenase products by NP-h.p.l.c.</td>
<td>80</td>
</tr>
<tr>
<td>Separation of lipoxygenase products by NP-h.p.l.c.</td>
<td>81</td>
</tr>
<tr>
<td>Effects of injection medium on chromatographic behaviour</td>
<td>81</td>
</tr>
<tr>
<td>NP-h.p.l.c. of methyl esters</td>
<td>83</td>
</tr>
<tr>
<td>Argentation High-Pressure Liquid Chromatography</td>
<td>83</td>
</tr>
<tr>
<td>Preparation of stationary phase</td>
<td>83</td>
</tr>
<tr>
<td>Mechanism of Ag-h.p.l.c.</td>
<td>83</td>
</tr>
<tr>
<td>Applications of Ag-h.p.l.c.</td>
<td>85</td>
</tr>
<tr>
<td>Reversed-phase High-Pressure Liquid Chromatography</td>
<td>87</td>
</tr>
</tbody>
</table>
Separation of mixtures of eicosanoids not containing peptido-leukotrienes 88
High-pressure liquid chromatography of peptido-leukotrienes 89
Gradients for reversed-phase-h.p.l.c. of arachidonic acid metabolites 92
Quantitation of Eicosanoids by High-Pressure Liquid Chromatography 95
Quantitation by u.v.-absorbance or fluorescence 95
Other methods of quantitation by h.p.l.c. 97
Acknowledgements 97
References 97

7. GAS CHROMATOGRAPHY AND MASS SPECTROMETRY OF EICOSANOIDS 99
S.E.Barrow and G.W.Taylor

Introduction 99
Principles of Gas Chromatography 99
General Principles of Mass Spectrometry 101
Magnetic sector instruments 101
Quadrupole mass spectrometers 103
Ionization 103
Sample Preparation 105
General precautions 105
Sample extraction 106
Sample purification 107
Use of stable isotope internal standards 109
Estimation of efficiency of extraction and purification 111
Derivatization 114
Gas Chromatography of Eicosanoids 117
Identification by comparison of retention times 118
Mass Spectrometry of Eicosanoids 118
Preliminary structural studies 118
Electron impact mass spectrometry 120
Chemical ionization mass spectrometry 127
Electron capture ionization 128
Soft ionization 133
Future Trends 137
Liquid chromatography—mass spectrometry 139
Ion trap g.c. detector 139
Acknowledgements 140
References 140
General Bibliography 141
8. MEASUREMENT OF PROSTAGLANDINS, THROMBOXANES AND LEUKOTRIENES BY SMOOTH MUSCLE BIOASSAY

P. J. Piper

Introduction 143
Superfusion 144
Prostaglandins 145
Thromboxane A$_2$ 146
Leukotrienes 146
 Cysteinyl-containing LTs 146
 Leukotriene B$_4$ 148
Conclusion 149
References 150

9. AGGREGOMETRY TECHNIQUES FOR PROSTANOID STUDY AND EVALUATION

B. J. R. Whittle

Introduction 151
Basic Principles of Aggregometry 151
 Optical aggregometry 151
 Measurements of aggregation in whole blood 155
Washed platelets 156
Data analysis 158
Materials 158
Inhibition of Platelet Aggregation by Prostanoids 159
 Species sensitivity 159
 Studies in whole-blood 160
 Washed platelets 161
Bioassay of Inhibitory Prostanoids 161
 Formation of prostacyclin 162
 Characterization of prostacyclin-like activity 162
Platelet Prostanoid Receptor Classification 163
 Prostanoid receptor antagonists 163
 Prostanoid receptor agonists 164
 Thromboxane A$_2$ mimetics and antagonists 164
Lipoxygenase Products 164
Conclusions 165
References 165

10. RADIOIMMUNOASSAY OF EICOSANOIDs

E. Granström, M. Kumlin and H. Kindahl

Introduction 167
Development of an Eicosanoid Radioimmunoassay 168
11. ENZYME IMMUNOASSAY

S. Yamamoto, K. Yokota, T. Tonai, F. Shono and Y. Hayashi

Introduction 197

Enzyme Immunoassay of 6-keto-PGF\(_{1\alpha}\)
Outline of the assay 197
Preparation of anti-6-keto-PGF\(_{1\alpha}\) antiserum 198
Conjugation of 6-keto-PGF\(_{1\alpha}\) and \(\beta\)-galactosidase 200
Reagents 201
Standard assay conditions 201
Calibration curve and cross-reactivity 202
Validity of the assay 203
Application to human serum 203

Enzyme Immunoassay of TXB\(_2\)
Outline of the assay 204
Preparation of anti-TXB\(_2\) IgG 204
Conjugation of TXB\(_2\) and \(\beta\)-galactosidase 205
Reagents 205
Standard assay conditions 205
Calibration curve and cross-reactivity 206
Validity of the assay 207
Application to human blood and urine 207
References 207

12. CYCLO-OXYGENASE: MEASUREMENT, PURIFICATION AND PROPERTIES

R. J. Kulmacz and W. E. M. Lands

Introduction 209
Measurement of Cyclo-oxygenase Activity 209
General features of the assay 210
Assay of cyclo-oxygenase with the polarographic oxygen electrode 210
Assay of cyclo-oxygenase with radioisotope 214
Assay of cyclo-oxygenase with spectrophotometry 215
Purification of Cyclo-oxygenase 215
Properties of Cyclo-oxygenase 217
Size of the synthase and its subunit composition 217
Haem requirement 218
Absorbance spectrum of the synthase 218
Protease sensitivity 220
Requirement for hydroperoxide initiator 220
Substrate requirements 224
Interaction with cyclo-oxygenase inhibitors 224
Acknowledgements 226
References 226

13. LIPOXYGENASES: MEASUREMENT, CHARACTERIZATION AND PROPERTIES 229
T.Schewe, H.Kühn and S.M.Rapoport

Introduction 229
Detection and Assay 229
Methods to measure lipoxygenase activity in purified systems 230
Strategy to detect lipoxygenase activities in cells and tissues 234
Detection of lipoxygenases by activity staining 237
Immunological and molecular-biological detection of lipoxygenases 238
Principles of Isolation and Purification of Lipoxygenases 239
Characterization of Lipoxygenases 239
Positional and steric specificity 240
Special lipoxygenase-catalysed reactions 240
Acknowledgements 242
References 242

14. LIPID PEROXIDATION 243
T.F.Slater and K.H.Cheeseman

Introduction 243
Methods for Measuring Lipid Peroxidation 244
Models for Studying Lipid Peroxidation 245
Homogeneous reactions 245
Purified enzymes and lipid micelles 246
Isolated organelles 246
Isolated cells 248
Whole tissue and whole organ studies 248
Whole animal 249

xvi
Practical Aspects

Protocol for NADPH-dependent lipid peroxidation 249
Protocol for CCl₄-stimulated lipid peroxidation 251
Protocol for NADPH–ADP–iron stimulated lipid peroxidation 252
Protocol for peroxidation stimulated by cumene hydroperoxide 253
Protocol for γ-irradiation 253
Malonaldehyde estimation 254
Diene conjugation measurement 255
Lipid hydroperoxide measurement 256
Procedures for measuring alkane production 256
Measurements of polyunsaturated fatty acids 256
Measurements of 4-hydroxy-alkenals 256
Concluding Remarks 256
References 257

15. QUANTITATIVE MEASUREMENT OF ARACHIDONIC ACID IN TISSUES OR FLUIDS 259
R.G. McDonald-Gibson

Introduction 259
General Theory 259
Internal Standards 260
Total Lipid Extraction 260
Thin-Layer Chromatographic Separation of Lipid Classes 261
Preparation of Methyl Esters for Gas Chromatography 262
Equipment 262
Reagents 262
Method 262
Gas—Liquid Chromatography 263
General equipment 263
Packed column separations 263
Capillary column separations 264
Calculations 264
References 265

16. METHODS IN PROSTANOID RECEPTOR CLASSIFICATION 267
R.A. Coleman

Introduction 267
The Classification and Nomenclature 268
Pharmacologically Active Agents in Prostanoid Receptor Classification 269
Use of the standard agonists 269
Synthetic agonists 271
Antagonists 275
Determination of Potency of Pharmacologically Active Agents 278
17. PAF-ACETHER (PLATELET-ACTIVATING FACTOR) 305
J. Benveniste

Introduction 305
Synthesis of Paf-Acether 305
The formation and release of paf-acether 305
Assay and characterization of paf-acether 307
Sources and Metabolism of Paf-Acether 308
Effects of Paf-Acether 309
Specific Inhibition of Paf-Acether-Induced Platelet Activation 310
References 310

APPENDIX
Eicosanoids: Structure, Availability, Storage and Stability 313
S. Nigam

INDEX 321