FILTRATION IN THE PHARMACEUTICAL INDUSTRY

Theodore H. Meltzer
Capitola Consulting Co.
Arlington, Virginia
and
Senior Consultant
Brunswick Technetics
(Filterite Corp.)
Timonium, Maryland

with contributions by
Eric W. Blakie, F. Raymond Gabler, Harwood Green, Hyman B. Katz,
Julius Z. Knapp, Alvin Lieberman, David S. Linton, Rosalie M. Mandaro
Contents

Series Introduction v
Foreword vii
Preface ix
Contributors xix

Part I FILTERS 1

1 Depth Filters, Particles, and Filter Ratings 3
 1.1 Filtration 3
 1.2 Depth-Type Filters 8
 1.3 Filter-Medium Migration 31
 1.4 Differential Pressure Effects on the Filtration Process 37
 1.5 Depth Filter/Membrane Comparisons 38
 1.6 Prefilter Action 39
 1.7 Nominal and Absolute Ratings 40
 1.8 Particles 41
 1.9 Filter Permeability 50
 1.10 Filter Capacity 52
 1.11 Particle Deformability 58
 References 58

2 Membrane Porosity: Its Origins and Modifications 61
 2.1 Overview of Membrane Porosity 61
 2.2 Track-Etch Membranes 62
 2.3 Porous Polytetrafluoroethylene 66
 2.4 Genesis of Porosity in Solution-Cast Films 70
 2.5 Phase-Inversion Membranes 76
 2.6 Pore Collapse 79
 2.7 Clearing of Membrane 80
 2.8 Orientation Effects 80
2.9 Influences on Tensile and Elongation Properties 83
2.10 Membrane Variability in Manufacture
References 85

3 Filter Porosity Characteristics 87
3.1 Numerical Pore Dimensions 87
3.2 Pore-Size Distribution 100
3.3 Pore Shapes 122
3.4 Implication of the Largest Pore 127
3.5 Implications of Breadth of Pore-Size Distributions 128
3.6 Anisotropic Pore Structures 133
3.7 Effect of Pore Length on Flow and Retention
References 138

4 Filter/Fluid Interactions 143
4.1 Scope of Considered Interactions 143
4.2 Extractables 143
4.3 Structural Compatibilities 159
4.4 Adsorptive Removal of Preparational Components by Filters
References 174

5 Charge-Modified Depth Filters: Cationic-Charge-Modified Nylon Membranes 183
Rosalie M. Mandaro
5.1 Overview 183
5.2 Depth Filter Materials 183
5.3 Typical and Atypical Properties of Depth Filters 184
5.4 Asbestos—The First CMD Filter 184
5.5 Development of Nonasbestos Depth Filters 186
5.6 Use of CMD Filters in Blood Fractionation 187
5.7 Measurement of Surface Charge Density on CMD Filters 187
5.8 CMD Filter Use in Pharmaceutical Processing 194
5.9 Conclusions: Charge-Modified Depth Filters 196
5.10 Cationic Charge-Modified Nylon Membranes 197
5.11 Conclusions: Cation Charge-Modified Nylon Membranes
References 205

6 Quality Assurance of Filters for Fluid Clarification 209
Hyman B. Katz
6.1 Introduction 209
6.2 Product Development 209
6.3 Manufacturing 211
6.4 Contamination Control 213
6.5 Cleanliness Levels 214
6.6 Performance Testing 216
6.7 Technical Support
References 218
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I</td>
<td></td>
</tr>
<tr>
<td>9.14 Steam</td>
<td>401</td>
</tr>
<tr>
<td>References</td>
<td>406</td>
</tr>
<tr>
<td>10 Flow and Pressure, Filter Sizing, and Filter System Design</td>
<td>409</td>
</tr>
<tr>
<td>Harwood Green and Theodore H. Meltzer</td>
<td></td>
</tr>
<tr>
<td>10.1 Influences on Flow</td>
<td>409</td>
</tr>
<tr>
<td>10.2 Pressure Considerations</td>
<td>410</td>
</tr>
<tr>
<td>10.3 Constant-Pressure Filtrations</td>
<td>413</td>
</tr>
<tr>
<td>10.4 Consumption of Filter Capacity</td>
<td>416</td>
</tr>
<tr>
<td>10.5 Constant-Flow Filtrations</td>
<td>420</td>
</tr>
<tr>
<td>10.6 Manufacturers' Catalog Information</td>
<td>420</td>
</tr>
<tr>
<td>10.7 The Utilization of Flow Decay Measurements</td>
<td>421</td>
</tr>
<tr>
<td>10.8 Sizing Prefilter/Final Filter Combinations</td>
<td>434</td>
</tr>
<tr>
<td>10.9 Design Considerations</td>
<td>450</td>
</tr>
<tr>
<td>References</td>
<td>452</td>
</tr>
<tr>
<td>11 Principles of Tangential Flow Filtration: Applications to Biological Processing</td>
<td>453</td>
</tr>
<tr>
<td>F. Raymond Gabler</td>
<td></td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>453</td>
</tr>
<tr>
<td>11.2 Filter Types Used in Tangential Flow</td>
<td>454</td>
</tr>
<tr>
<td>11.3 Microporous Membranes and Secondary Layer Formation</td>
<td>456</td>
</tr>
<tr>
<td>11.4 Definition of Terms</td>
<td>457</td>
</tr>
<tr>
<td>11.5 Theory of Tangential Flow Filtration</td>
<td>459</td>
</tr>
<tr>
<td>11.6 Practical Aspects of Tangential Flow Filtration</td>
<td>460</td>
</tr>
<tr>
<td>11.7 Concentration Polarization</td>
<td>466</td>
</tr>
<tr>
<td>11.8 Determining Optimum Operating Parameters Via Total Recycle</td>
<td>468</td>
</tr>
<tr>
<td>11.9 Membrane Fouling</td>
<td>473</td>
</tr>
<tr>
<td>11.10 Particulate Loading</td>
<td>475</td>
</tr>
<tr>
<td>11.11 Tangential Flow Applications</td>
<td>476</td>
</tr>
<tr>
<td>11.12 Tangential Flow Equipment</td>
<td>486</td>
</tr>
<tr>
<td>11.13 Summary</td>
<td>488</td>
</tr>
<tr>
<td>References</td>
<td>488</td>
</tr>
<tr>
<td>Part III PARTICLES</td>
<td>491</td>
</tr>
<tr>
<td>12 Viable/Nonviable Particle and Pyrogen Retention</td>
<td></td>
</tr>
<tr>
<td>12.1 Parenteral Requirements</td>
<td>493</td>
</tr>
<tr>
<td>12.2 Sterilization by Filtration</td>
<td>494</td>
</tr>
<tr>
<td>12.3 Sterilizing Filter Evaluation</td>
<td>509</td>
</tr>
<tr>
<td>12.4 Other-Than Sterilizing Grade Filters</td>
<td>514</td>
</tr>
<tr>
<td>12.5 Sterility Testing</td>
<td>518</td>
</tr>
<tr>
<td>12.6 Determination of Bioburden</td>
<td>524</td>
</tr>
<tr>
<td>12.7 Depyrogenation</td>
<td>525</td>
</tr>
<tr>
<td>12.8 Particulate Material</td>
<td>527</td>
</tr>
<tr>
<td>12.9 Filter Validation</td>
<td>531</td>
</tr>
<tr>
<td>12.10 Grow-Through</td>
<td>537</td>
</tr>
<tr>
<td>References</td>
<td>541</td>
</tr>
</tbody>
</table>
Contents

13 Detection and Measurement of Particles in Bulk Pharmaceutical Liquids

Alvin Lieberman

13.1 Definition of Scope 545
13.2 Sample Handling Problems 546
13.3 Particle Measurement Methods for Pharmaceutical Liquids 557
13.4 Electronic Operation 575
13.5 Liquid Feeders and Flow Controls 577
13.6 Operating Parameters for Optical Particle Counters 579
13.7 Liquid Flow Rate Effects 581
13.8 Calibration Bases 581
13.9 Dilution Effects 581
13.10 Measurement Procedures 582
13.11 Calculation of Results 583
13.12 Conclusions 584
References 584

14 Detection and Measurement of Particles in Sealed Containers

Julius Z. Knapp

14.1 Introduction 587
14.2 Analytical and Visual Pharmaceutical Particulate Standards 589
14.3 Visible Particulate Sources 590
14.4 Vial Stoppers: A Major Particulate Source 590
14.5 Physiological Effect of Particulates in Parenteral Products 595
14.6 The Probabilistic Inspection 600
14.7 A Probabilistic Evaluation of the Visual Inspection for Particulates 602
14.8 Effect of Container Clarity on Visual Particulate Inspection 604
14.9 Rejection Rate Analysis by Histogram Showing Distribution of Visual Particulate Rejects 605
14.10 Visual Inspection Reject Rate Unmasked as a Mortality Table Effect 605
14.11 Relationships of Rejection Probability and Rejects in a Normal Parenteral Production Batch 607
14.12 Effect of Second or Cull Inspection of Final Reject Distribution in a Normal Parenteral Production Batch 607
14.13 Transformation of Rule-of-Thumb Quality Categories into Probabilistically Defined Regions 607
14.14 Inspection Security Evaluated with the Rejection Zone Efficiency (RZE) Parameter 612
14.15 Accept/Reject Discrimination Evaluated with the Reject Rate in the Accept and Gray Zone (RAG) Parameter 615
14.16 The Science of Visual Inspection 615
14.17 Effect on the 50% Detectability Response of a Target When Contrast and Background Luminance Are Varied in Time-Limited Trials 617
14.18 Review of Biophysics Vision Experiments Supporting and Extending Particulate Inspection Experiments Results 618
14.19 IES Lighting Recommendations for Various Visual Tasks 622
14.20 Inspector Selection and Validation 623
14.21 Bootstrap Inspector Selection under Actual Inspection Conditions Using RZE and RAG 629
14.22 Durability of RZE and RAG Determinations for a Validated Inspector Group 632
14.23 Durability of Individual and Group RZE and RAG Parameters 633
14.24 The Core Validation Problem for Visual and Optical Inspection 634
14.25 Comparison of Different Probabilistic Inspection Techniques 634
14.26 Two-Dimensional Rejection Probability Distribution 638
14.27 Application of the Manual Inspection Performance Yardstick 640
14.28 Objective Standards 644
14.29 Hologrammic Evaluation of Automated and Visual Inspection Performance 647
14.30 Visibility Region Boundaries for Actual Particulates in Parenteral Products 656
14.31 Accuracy Limitations Imposed by Sampling Inspection Procedures 657
14.32 Uhlir's Model of Particulate Inspection 658
14.33 A Practical Cost-Effective Inspection Validation Procedure 661
14.34 Inspection Systems: Practical Considerations 699
14.35 Objective Physical Criteria Validations 704
14.36 Commercial Systems 705
References 705

15 Pump Types and Their Selection 709
David S. Linton

15.1 Introduction 709
15.2 Definition of Terms 709
15.3 Pump Parameters 713
15.4 Materials of Compositon 714
15.5 Sterilization of Pumps 715
15.6 Types of Pumps 717
15.7 Summary 725
Reference 726

16 Filter and Filter Holder/Housing Design 727
16.1 General Filter Holder/Housing Design 727
16.2 Disk versus Cartridge Configuration 770
Contents

16.3 Filter Cartridges 772
16.4 Sterilization of Filter and Holder 780
16.5 Disposable Filter Devices 784
References 787

Part V PRACTICAL FILTRATION APPLICATIONS 789

17 Water Purification 791
17.1 Grades of Water 791
17.2 Various Water Purification Treatments 795
17.3 Overview of Water Purification 809
17.4 Deionization by Ion-Exchange Reactions 811
17.5 Reverse Osmosis 833
17.6 Ultrafiltration Membranes 854
17.7 Ultraviolet Irradiation of Water 855
17.8 Electrodeionization 858
17.9 Distillation of Water 860
17.10 Use of Filters in Water Purification 882
17.11 Water Storage and Distribution 895
17.12 Water for Injection Installations 897
References 913

18 Pyrogens, and the Depyrogenation of Solutions with Ultrafiltration Membranes 919
F. Raymond Gabler

18.1 Biochemistry of Bacterial Pyrogens 919
18.2 Classical Methods of Removing Pyrogens 922
18.3 Removing Pyrogens with Ultrafiltration Membrane Filters 923
18.4 Scaling Up a UF System from Laboratory to Production 936
18.5 Summary 938
References 938

19 Theory and Practice of Compressed Air Filtration and Sterilization in the Production of Antibiotics 941
Eric W. Blakie

19.1 Introduction 941
19.2 Compressed Air Contamination 942
19.3 Prefiltration 945
19.4 The Compressed Air Sterilization Filter 945
19.5 Filtration Theory 950
19.6 The Modern Air Sterilization Cartridge 952
19.7 Filter Housings 954
19.8 Performance Comparison 957
19.9 Filter Selection and Sizing 962
19.10 Installation 964
19.11 Steam Sterilization 967
19.12 In Situ Steam Sterilization Procedure 967
19.13 Problem Areas 968
19.14 Filter Cartridge Life 968
19.15 Integrity Testing 970
Contents

19.16 Microbial Testing 974
19.17 Conclusion 977
References 978

20 Filtration in the Pharmaceutical Processing Practices 979
 20.1 Regulatory Functions 979
 20.2 Cleanliness of People and Facilities 982
 20.3 Sterilization of Filters 983
 20.4 Repeated Advice Concerning Filtration 986
 20.5 Large-Volume Parenterals 986
 20.6 Small-Volume Parenterals 996
 20.7 Ophthalmic Preparations 1003
 20.8 Antibiotics 1008
 20.9 Specific Elaborations 1018
 20.10 Blood, Plasma, and Serum 1021
 20.11 Tissue Culture Medium Filtration 1040
 20.12 Filtration in Vaccines Preparation 1045
 References 1051

Postscript 1055
 Present Status 1055
 Future Developments 1055
 Basis for Prediction 1057

Author Index 1059

Subject Index 1069