Synergism and Antagonism in Chemotherapy

Edited by
TING-CHAO CHOU
Memorial Sloan-Kettering Cancer Center
New York, New York
DARRYL C. RIDEOUT
The Research Institute of Scripps Clinic
La Jolla, California

ACADEMIC PRESS, INC.
Harcourt Brace Jovanovich, Publishers
San Diego New York Boston London
Sydney Tokyo Toronto
Contents

Contributors ... xiii
Preface .. xv

PART I

Reviews and Methods of Quantitation

CHAPTER 1
Synergism, Antagonism, and Potentiation in Chemotherapy: An Overview 3
Darryl C. Rideout and Ting-Chao Chou

I. Drug Combinations in Chemotherapy ... 6
II. Mechanisms of Interaction ... 25
III. Condition-Related Aspects of Synergism,
 Antagonism, and Potentiation ... 51
References .. 53

CHAPTER 2
The Median-Effect Principle and the Combination Index
for Quantitation of Synergy and Antagonism .. 61
Ting-Chao Chou

I. Introduction .. 62
II. Dose-Effect Analysis with Physicochemical Approach
 as Opposed to Empirical Approach ... 62
III. The Median-Effect Principle of the Mass-Action Law 65
IV. Dose-Effect Analysis of Combined Drug Effects 69
X. Miscellaneous Combinations .. 207
XI. Resistance Modulators as Adjunct Antimalarial Chemotherapy 209
References .. 211

CHAPTER 6
Quantitation of Synergism and Antagonism of
Two or More Drugs by Computerized Analysis 223
JOSEPH H. CHOU
I. Theory and Equations .. 224
II. Computerized Simulation and Automation 225
III. Illustration of Analysis with Examples 230
IV. Other Applications and Future Developments 237
References .. 241

PART II
Mechanisms of Interaction

CHAPTER 7
Inhibition of Metabolic Drug Inactivation: Modulation of
Drug Activity and Toxicity by Perturbation of Glutathione Metabolism 245
OWEN W. GRIFFITH and HENRY S. FRIEDMAN
I. Introduction .. 246
II. Glutathione Metabolism and Turnover 247
III. Glutathione as a Cellular Protectant 255
IV. Pharmacological Control of Glutathione Levels and Metabolism 259
V. Therapeutic Applications of Pharmacologic Manipulations of
 Glutathione Levels or Metabolism .. 271
VI. Glutathione Modulation: Perspective on Further Applications 277
References .. 279

CHAPTER 8
Synergy and Antagonism in Polymerase-Targeted Antiviral Therapy: Effects
of Deoxynucleoside Triphosphate Pool Modulation on Prodrug Activation 285
THOMAS SPECTOR and JAMES A. FYFE
I. Synergistic Antiherpetic Chemotherapy by Acyclovir (ACV)
 and an Inhibitor of Herpes Virus Ribonucleotide Reductase 286
II. Antagonism of 3'-Azido-3'-deoxythymidine (AZT) Antiviral
 Action by Ribavirin (RBV) ... 297
CHAPTER 12
Enhanced Effects of Drugs That Bind Simultaneously to the Same Macromolecular Target ... 409
LUCJAN STREKOWSKI and W. DAVID WILSON
I. Introduction ... 409
II. Interactions with Nucleic Acids .. 410
III. Interactions with Protein Targets .. 436
References .. 438

CHAPTER 13
Biochemical Modulation of 5-Fluorouracil by Metabolites and Antimetabolites 449
ENRICO MINI and JOSEPH R. BERTINO
I. Introduction .. 449
II. Mechanism of Action of FUra .. 451
III. Sequential Methotrexate–FUra .. 452
IV. Leucovorin–FUra ... 464
V. Sequential MTX–LV–FUra ... 475
VI. 6-Methylmercaptopurine Ribonucleoside–FUra 477
VII. Phosphonacetyl-L-Aspartic Acid and/or Thymidine–FUra 477
VIII. Hydroxyurea–FUra ... 482
IX. Dipyridamol–FUra ... 482
X. Purines–FUra ... 483
XI. Allopurinol–FUra ... 484
XII. Uridine–FUra .. 485
XIII. Conclusions .. 487
References .. 488

CHAPTER 14
Synergism and Antagonism through Direct Bond Formation between Two Agents in Situ ... 507
DARRYL C. RIDEOUT and THEODORA CALOGEROPOULOU
I. Introduction ... 508
II. Nonbiochemical Condensation Reactions Occurring in Vivo or Under Near-Physiological Conditions .. 508
III. Enhanced Cytotoxic and Antimicrobial Bioactivity of Polyfunctional versus Monofunctional Molecules 512
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.</td>
<td>Synergism Involving Covalent Self-Assembly of Cytotoxic and Antimicrobial Agents from Less Bioactive Precursors</td>
<td>520</td>
</tr>
<tr>
<td>V.</td>
<td>Antagonism Involving Covalent Self-Assembly</td>
<td>528</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>534</td>
</tr>
</tbody>
</table>

CHAPTER 15

Chemotherapeutic Potentiation through Interaction at the Level of DNA

BEVERLY A. TEICHER, TERENCE S. HERMAN, and J. PAUL EDER

I. Isobologram Methodology | 542 |
II. Combinations of Alkylating Agents and Repair Inhibitors | 545 |
III. Combined Alkylating Agent Studies | 562 |
IV. Nitroimidazole and Perfluorochemical Emulsion/O$_2$ Chemotherapy Combinations | 570 |
References | 576 |

CHAPTER 16

Drug Synergism, Antagonism, and Collateral Sensitivity Involving Genetic Changes

VASSILIOS I. AVRAMIS, SHENG-HE HUANG, and JOHN S. HOLCENBERG

I. Introduction | 585 |
II. Over-Expression of Genes | 586 |
III. Under-Expression of Genes | 589 |
References | 616 |

PART III

Condition-Selective Synergism and Antagonism

CHAPTER 17

Schedule-Dependent Effects in Antineoplastic Synergism and Antagonism

BARBARA K. CHANG

I. Introduction | 623 |
II. Schedule-Dependent Interactions Based upon Cell Cycle Considerations | 626 |
III. Schedule-Dependent Interactions Based Primarily upon Biochemical Considerations: Combinations (Largely of Antimetabolites) Affecting the Enzymes Involved in DNA Synthesis | 638 |
IV. Interactions Based upon Altered Drug Transport | 643 |
CHAPTER 18
Effects of Drug Distribution and Cellular Microenvironment on the Interaction of Cancer Chemotherapeutic Agents .. 659
RALPH E. DURAND
I. Overview .. 659
II. Introduction 660
III. Quantitative Techniques for Heterogeneous Systems 664
IV. Interaction of Chemotherapeutic Agents 672
V. Additional Considerations .. 681
References .. 684

CHAPTER 19
Synergistic Interactions at the Solid Tumor Level through Targeting of Therapies against Two or More Different Tumor Cell Subpopulations 689
DIETMAR W. SIEMANN and PETER C. KENG
I. Introduction 689
II. Background on Cell Subpopulations 690
III. Characterization of Tumor Cell Subpopulations 691
IV. Cell Subpopulations Influencing the Overall Tumor Response to Therapy .. 693
V. Improving the Therapeutic Interaction through Therapy
 Combinations Directed against Specific Tumor Cell Subpopulations ... 702
VI. Conclusions 709
References .. 710

CHAPTER 20
Selective Synergism against the Target versus Host Bone Marrow Progenitor Cells .. 715
ELLIN BERMAN and TAI-TSUNG CHANG
I. Introduction 715
II. Azidothymidine and Recombinant Interferon Alpha: Synergistic Effects Against the Human Immunodeficiency Virus versus Normal Human Bone Marrow Progenitor Cells .. 716
III. Cancer Cell Purging in Autologous Bone Marrow Transplantation ... 726
IV. Selective Synergism: The Role for Data Analysis Using the Median-Effect Equation in the Design of Clinical Drug Trials 733

V. Conclusion ... 734
References ... 734

Index ... 739