The Pharmacology of Noradrenaline in the Central Nervous System

Edited by

DAVID J. HEAL
Boots Pharmaceuticals Research Department, Nottingham

and

CHARLES A. MARS DEN
Department of Physiology and Pharmacology, Medical School
Queen's Medical Centre, Nottingham

OXFORD NEW YORK TOKYO
OXFORD UNIVERSITY PRESS
1990
Contents

List of contributors xv
List of abbreviations xvii
Chemical structures of compounds with pharmaceutical company code numbers xxi

1 The anatomy and function of noradrenaline in the mammalian brain
VICKY R. HOLETS

1.1 Introduction 1
1.2 Development of noradrenergic systems 2
1.3 Perikarya 3
1.4 Noradrenergic axon bundles 9
1.5 Terminal fields 11
1.6 Coexistence of neurotransmitters 18
1.7 Summary and future directions 27

2 Adrenoceptor autoradiography
C. RICHARD JONES, DANIEL HOYER, AND JOSE M. PALACIOS

2.1 Introduction 41
2.2 Methodological aspects 41
2.3 Properties of adrenergic ligands 43
2.4 Anatomical localization of adrenoceptors 48
2.5 Receptor–neurotransmitter mismatch 62
2.6 Localization of adrenoceptor-mediated responses 64
2.7 Summary and concluding remarks 65

3 Molecular pharmacology of adrenergic receptors and their cellular localization in brain cells in culture
JOEL BOCKAERT, VINCENT HOMBURGER, AND FRITZ SLADECZEK

3.1 Introduction 76
3.2 Structure, cloning, and mutagenesis of adrenergic receptors 77
3.3 Metabolism of adrenergic receptors 82
3.4 Molecular mechanisms of desensitization 88
Contents

3.5 Localization of adrenergic receptors on neurones and glial cells in cultures 97
3.6 Concluding remarks 105

4 Biochemical and functional correlates of adrenoceptor function in the central nervous system
DAVID A. KENDALL AND JEAN P. ROBINSON
4.1 Introduction 118
4.2 β-Adrenoceptors 119
4.3 α-Adrenoceptors 121
4.4 Potentiation of β-adrenoceptor-stimulated cyclic AMP formation by α-adrenoceptor stimulation 125
4.5 Cyclic GMP 132
4.6 Adrenoceptor activation of phospholipase A₂ 133
4.7 Modification of adrenoceptor function by drug treatments 134

5 The regulation of neurotransmitter release by α₂-adrenoceptors in the central nervous system
SONIA ARBILLA AND SALOMON Z. LANGER
5.1 Introduction 141
5.2 The role of endogenous noradrenaline in the regulation of neurotransmitter release: activation of α₂-adrenergic heteroreceptors on 5-hydroxytryptaminergic nerve terminals 143
5.3 Changes in α₂-adrenoceptor sensitivity: differences between α₂-adrenergic autoreceptors and α₂-adrenergic heteroreceptors on 5-hydroxytryptaminergic nerve terminals 145
5.4 The involvement of cyclic nucleotides in the modulation of neurotransmitter release via presynaptic receptors: possible differences between α₂-adrenergic autoreceptors and α₂-adrenergic heteroreceptors 146
5.5 The pharmacology of α₂-adrenoceptors: differences between α₂-adrenergic autoreceptors and α₂-adrenergic heteroreceptors on presynaptic 5-hydroxytryptaminergic nerve terminals 148
5.6 Summary and conclusions 149

6 A critical assessment of methods for monitoring noradrenaline release \textit{in vivo}
C. A. MARSDEN
6.1 Introduction 155
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2 What can we hope to monitor</td>
<td>155</td>
</tr>
<tr>
<td>6.3 Use of conscious or anaesthetized animals</td>
<td>157</td>
</tr>
<tr>
<td>6.4 Microdialysis of extracellular noradrenaline</td>
<td>160</td>
</tr>
<tr>
<td>6.5 Voltammetry</td>
<td>172</td>
</tr>
<tr>
<td>6.6 Conclusions</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 Restricted afferent control of locus coeruleus neurones revealed by anatomical, physiological, and pharmacological studies</th>
<th>187</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>187</td>
</tr>
<tr>
<td>7.2 Discharge properties of locus coeruleus neurones in behaving animals</td>
<td>188</td>
</tr>
<tr>
<td>7.3 Afferents to the locus coeruleus: tract-tracing studies</td>
<td>190</td>
</tr>
<tr>
<td>7.4 Afferents to the locus coeruleus: physiological and pharmacological studies in vivo</td>
<td>204</td>
</tr>
<tr>
<td>7.5 Synaptic potentials in the locus coeruleus in vitro</td>
<td>216</td>
</tr>
<tr>
<td>7.6 Neurochemical identity of locus coeruleus afferents</td>
<td>220</td>
</tr>
<tr>
<td>7.7 Functional implications</td>
<td>229</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 Locus coeruleus neuronal activity in behaving animals</th>
<th>248</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>248</td>
</tr>
<tr>
<td>8.2 Neurochemical identification</td>
<td>249</td>
</tr>
<tr>
<td>8.3 Experimental studies</td>
<td>250</td>
</tr>
<tr>
<td>8.4 Summary and conclusions</td>
<td>259</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9 The effects of drugs on behavioural models of central noradrenergic function</th>
<th>266</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>266</td>
</tr>
<tr>
<td>9.2 Behavioural models used for investigating α₁-adrenoceptor function in the central nervous system</td>
<td>267</td>
</tr>
<tr>
<td>9.3 Behavioural models for investigating α₂-adrenoceptors in the central nervous system</td>
<td>276</td>
</tr>
<tr>
<td>9.4 Behavioural models for investigating β-adrenoceptor function in the central nervous system</td>
<td>297</td>
</tr>
<tr>
<td>9.5 Conclusions</td>
<td>301</td>
</tr>
</tbody>
</table>
Contents

10 The effects of antidepressant drugs on noradrenergic receptor mechanisms in the central nervous system
A. RICHARD GREEN

10.1 Introduction 316
10.2 The effects of antidepressant drugs on noradrenaline metabolism 317
10.3 Effects of antidepressant drugs and ECS on β-adrenoceptors 318
10.4 Effects of antidepressant drugs and ECS on α2-adrenoceptors 328
10.5 α1-Adrenoceptor function after antidepressant treatments: biochemical and behavioural studies 334
10.6 The [3H]-desipramine binding site in brain 336
10.7 General discussion 336

11 Functions of the locus coeruleus noradrenergic system: a neurobiological and behavioural synthesis
BARRY J. EVERITT, TREVOR W. ROBBINS, AND NATHAN R. W. SELDEN

11.1 Neuroanatomical and neurophysiological considerations 349
11.2 Behavioural studies 356
11.3 Effects of dorsal noradrenergic bundle lesions 357
11.4 Neuroanatomical specificity of coeruleo-cortical noradrenergic lesions and the effects of hypothalamic noradrenergic denervation 360
11.5 The effects of lesions of the dorsal noradrenergic bundle on contextual learning 365
11.6 Theoretical implications 367

12 Central adrenoceptors in response and adaptation to stress
S. CLARE STANFORD

12.1 Introduction 379
12.2 Experimental protocol 380
12.3 Repeated (chronic) stress 381
12.4 Single (acute) stress 387
12.5 Adrenoceptors and behavioural adaptation to stress 392
12.6 Learned helplessness and behavioural despair 395
12.7 GABA and adrenoceptor changes in response to stress 401
12.8 Behavioural implications of delayed changes in adrenoceptors 406
12.9 Conclusions 410
13 Central noradrenergic neurones and cardiovascular control: focus on possible neuropeptide–noradrenaline interactions
SHEILA M. GARDINER AND TERENCE BENNETT

13.1 Introduction 423
13.2 Noradrenaline 423
13.3 Angiotensin 426
13.4 Vasopressin 428
13.5 Corticotrophin-releasing factor (CRF) 431
13.6 Adrenocorticotropic hormone (ACTH) 431
13.7 Thrytrophin-releasing hormone (TRH) 432
13.8 Atrial natriuretic factor (ANF) 433
13.9 Galanin 434
13.10 Calcitonin gene-related peptide (CGRP) 436
13.11 Neuropeptide Y 437
13.12 Somatostatin 440
13.13 Cholecystokinin 441
13.14 Substance P 442
13.15 Bradykinin 442
13.16 Neurotensin 444
13.17 Summary and conclusions 444

14 Functional interactions between neuropeptides and noradrenaline in the brain and spinal cord
GEOFFREY W. BENNETT

14.1 Introduction 454
14.2 Noradrenaline–peptide coexistence in brain 455
14.3 Noradrenaline–neuropeptide interactions in the hypothalamus 458
14.4 Effects of noradrenaline on neuroendocrine mechanisms 460
14.5 Noradrenaline–peptide interactions in brain 464
14.6 Measurement of noradrenaline release in the brain 468
14.7 Functional interactions between TRH and noradrenaline in brain 470
14.8 Neuropeptide–noradrenaline interactions in the spinal cord 476
14.9 Functional interactions between TRH and noradrenaline in the spinal cord 478
14.10 Conclusions and comments 483

15 Summary
DAVID J. HEAL AND CHARLES A. MARSDEN

15.1 Mapping of neuronal pathways and the significance of noradrenaline–peptide coexistence 495
These are the contents of the book.

15.2 Receptors 496
15.3 Behavioural pharmacology 496
15.4 Drug development 498
15.5 Concluding remarks 499

Index 501