Motilin

Edited by

Zen Itoh
Gastrointestinal Laboratories
College of Medical Technology
Gunma University
Maebashi, Japan

Academic Press, Inc.
Harcourt Brace Jovanovich, Publishers
San Diego New York Berkeley
Boston London Sydney Tokyo Toronto
Contents

Contributors xi
Preface xv

1. Introduction
Vay Liang W. Go
Text 1
References 3

2. The Discovery of Motilin
J. C. Brown and C. H. S. McIntosh
Text 5
References 11

3. Purification and Chemical Structure of Porcine and Canine Motilins and Evidence for the Existence of Motilin in Other Species
C. H. S. McIntosh and J. C. Brown
I. Isolation of Porcine Motilin 13
II. Amino Acid Composition and Sequence Analysis of Porcine Motilin 16
III. Isolation of Canine Motilin 19
IV. Amino Acid Composition and Sequence Analysis of Canine Motilin 20
V. Motilin in Other Species 22
VI. Heterogeneity of Motilin 24
VII. Structure–Activity Relationships 25
References 26

4. Chemical Synthesis, Radioimmunoassay, and Distribution of Immunoreactivity of Motilin
Noboru Yanaihara, Chizuko Yanaihara, Tohru Mochizuki, Kazuaki Iguchi, and Minoru Hoshino
I. Introduction 31
II. Chemical Synthesis 32
Contents

III. Radioimmunoassay 35
IV. Distribution of Immunoreactivity 41
References 43

5. Prohormone of Human Motilin
Yutaka Seino, Jun Takeda, and Hiroo Imura
I. Heterogeneity of Human Motilin (porcine motilin) 47
II. Isolation and Characterization of a Motilin cDNA Clone 48
III. Primary Structure of Human Prepromotilin 48
IV. Comparison of Motilin Sequence 50
References 51

6. Morphological Identification of Motilin in the Gut
Shigeru Kobayashi and Takashi Uchida
I. Immunocytochemical Demonstration of Motilin-Containing Cells 53
II. Immunocytochemical Controls 56
III. Enterochromaffin Cells and Motilin 57
IV. Structure and Ultrastructure of the Mo Cells 60
V. Transportation Route of Motilin in the Lamina Propria Mucosae 63
VI. Phylogeny, Ontogeny, and Kinetics 64
VII. Mo Cells in the Segi’s Cap 67
References 70

7. Mechanisms of Motilin Excitation as Determined by in Situ and in Vitro Studies
J. E. T. Fox
I. Introduction 73
II. Sites and Mechanisms of Action 75
III. Conclusion 88
References 88

8. Motilin Receptors
T. L. Peeters, G. Vantrappen, and I. Depoortere
I. Introduction 93
II. Search for Motilin Binding Sites 94
III. Characterization of Motilin Binding 97
IV. Localization of Motilin Receptors 101
V. Regulation and Development 103
VI. Motilin Agonists 104
VII. Conclusions 105
References 106
9. Biological Activity of Motilin in Gastric, Pancreatic, and Duodenal Secretion
 Stanislaw J. Konturek, Jan W. Konturek, Piotr Thor, and Jolanta Jaworek
 I. Introduction 111
 II. Distribution and Release of Motilin as Related to Gastrointestinal Motilin 112
 III. Mechanism of Action 112
 IV. Secretory Component of Migrating Motor Complex 114
 V. Motilin and Gastroduodenal Secretion 114
 VI. Motilin and Pancreatic and Biliary Secretion 119
 VII. Summary and Conclusion 123
 References 123

10. Biological Activity in Gastric Emptying
 Takeo Yamagishi and Haile T. Debas
 I. Introduction 127
 II. Normal Regulation of Gastric Emptying 127
 III. Effect of Motilin on Gastric and Duodenal Smooth Muscle in Vitro 128
 IV. Effect of Motilin on Myoelectric and Contractile Activity in Vivo 129
 V. Effect of Motilin on Gastric Emptying in Animals 129
 VI. Effect of Motilin on Gastric Emptying in Humans 130
 References 131

11. Effect of Motilin on Gastrointestinal Motor Activity in the Dog
 Zen Itoh
 I. Introduction 133
 II. Materials and Methods 136
 III. Results 139
 IV. Discussion and Conclusion 149
 References 151

12. Role of Motilin in Biliary Tract Physiology
 Torgny Svenberg and Jugemar Nilsson
 I. Introduction 155
 II. Physiological Background 155
 III. Effects of Exogenous Motilin Infusions on the Biliary Tract—in Vivo or in Vitro Experiments in Animals or Humans 157
 IV. Fasting Plasma Motilin Fluctuations in Relation to Interdigestive Biliary Emptying—Studies in Humans 160
Kae Yol Lee and William Y. Chey

I. Introduction 169
II. Plasma Motilin Concentrations in Interdigestive States 170
III. Motilin Release after Ingestion of a Meal or Fat 176
IV. Effect of Duodenal pH Changes on Motilin Release 178
V. Effects of Hormones, Peptides, and Others on Motilin Release 179
VI. Plasma Motilin Levels in Relation to Interdigestive Pancreatic Secretion 181
VII. Motilin Release in Abnormal States 182
References 184

14. Mechanism of Motilin Release by Luminal Stimuli and Vagal Nerve
N. E. Diamant

I. Introduction 191
II. Localization of Motilin 193
III. Neural Mechanisms for Motilin Release 194
IV. Intraluminal Nutrients 196
V. Intraluminal Acid and Alkali 200
VI. Intraluminal Biliary and Pancreatic Secretions 201
VII. Other Factors 202
References 203

15. Clinical Significance of Motilin in Diseases of the Gastrointestinal Tract
G. Vantrappen, T. L. Peeters, and J. Janssens

I. Normal Motilinemia 209
II. Motilinemia and Gastrointestinal Dysfunction 213
III. Therapeutic Applications 218
IV. Summary and Conclusions 218
References 220
16. Gastroduodenal Motor Dysfunction and Plasma Motilin Concentration in Patients with Duodenal Ulcers
Toshikazu Sekiguchi, Motoyasu Kusano, Toshio Nishioka, and Zen Itoh

I. Interdigestive, Intragastric, and Duodenal pH and Motility in Normal Subjects 226
II. IMC Appearance in 24-hr Monitoring of Intragastric and Duodenal pH and Motility of Normal Subjects 229
III. Pattern of Interdigestive Gastroduodenal Motility and pH in Duodenal Ulcer Patients 229
IV. IMC in 24-hr Monitoring of Gastroduodenal Motility and pH of Duodenal Ulcer Patients 230
V. Comparison of Gastroduodenal Motility and pH in Duodenal Ulcer Patients and Normal Subjects 231
VI. Plasma Motilin Concentrations and Interdigestive Gastroduodenal Motility in Humans 234
VII. Characteristics of Plasma Motilin Behavior and IMC Appearance in Duodenal Ulcer Patients 237
VIII. Histamine H₂ Receptor Antagonist Neutralizes Intraluminal pH of the Gastroduodenum, but GI-IMC Appears after an Increase in Plasma Motilin 239
References 242

17. Motilide, Motilin-like Macrolides
Satoshi Omura, Yoichi Kondo, and Zen Itoh

I. Introduction 245
II. Chemical Synthesis of Erythromycin Derivatives 246
III. Biological Activity 246
IV. Receptor Binding Study 253
V. Discussion and Conclusion 255
References 255

Index 257