Integration of Microarray and Textual Data Improves the Prognosis Prediction of Breast, Lung and Ovarian Cancer Patients

Mining Metabolic Networks for Optimal Drug Targets

Global Alignment of Multiple Protein Interaction Networks

Predicting DNA Methylation Susceptibility Using CpG Flanking Sequences

Multiscale Modeling and Simulation Session: From Molecules to Cells to Organisms?

Session Introduction

Combining Molecular Dynamics and Machine Learning to Improve Protein Function Recognition

Prediction of Structure of G-Protein Coupled Receptors and of Bound Ligands with Applications for Drug Design

Markov Chain Models of Coupled Intracellular Calcium Channels: Kronecker Structured Representations and Benchmark Stationary Distribution Calculations

Spatially-Compressed Cardiac Myofilament Models Generate Hysteresis that Is Not Found in Real Muscle

Modeling Ventricular Interaction: A Multiscale Approach from Sarcomere Mechanics to Cardiovascular System Hemodynamics

Sub-Micrometer Anatomical Models of the Sarcolemma of Cardiac Myocytes Based on Confocal Imaging

Efficient Multiscale Simulation of Circadian Rhythms Using Automated Phase Macromodelling Techniques

Integration of Multi-Scale Biosimulation Models via Light-Weight Semantics

Comparisons of Protein Family Dynamics

Protein-Nucleic Acid Interactions: Integrating Structure, Sequence, and Function

Session Introduction

Functional Trends in Structural Classes of the DNA Binding Domains of Regulatory Transcription Factors

Using DNA Duplex Stability Information for Transcription Factor Binding Site Discovery

A Parametric Joint Model of DNA-Protein Binding, Gene Expression and DNA Sequence Data to Detect Target Genes of a Transcription Factor

An Analysis of Information Content Present in Protein-DNA Interactions

Use of an Evolutionary Model to Provide Evidence for a Wide Heterogeneity of Required Affinities Between Transcription Factors and Their Binding Sites in Yeast

Striking Similarities in Diverse Telomerase Proteins Revealed by Combining Structure Prediction and Machine Learning Approaches

Tiling Microarray Data Analysis Methods and Algorithms

Session Introduction

CMARRT: A Tool for the Analysis of ChIP-chip Data from Tiling Arrays by Incorporating the Correlation Structure

Transcript Normalization and Segmentation of Tiling Array Data

GSE: A Comprehensive Database System for the Representation, Retrieval, and Analysis of Microarray Data

Translating Biology: Text Mining Tools That Work
Session Introduction

Assisted Curation: Does Text Mining Really Help?

Evidence for Showing Gene/Protein Name Suggestions in Bioscience Literature Search Interfaces

Enabling Integrative Genomic Analysis of High-Impact Human Diseases Through Text Mining

Information Needs and the Role of Text Mining in Drug Development

EpiLoc: A (Working) Text-Based System for Predicting Protein Subcellular Location

Filling the Gaps Between Tools and Users: A Tool Comparator, Using Protein-Protein Interactions as an Example

Comparing Usability of Matching Techniques for Normalising Biomedical Named Entities

Intrinsic Evaluation of Text Mining Tools May Not Predict Performance on Realistic Tasks

BANNER: An Executable Survey of Advances in Biomedical Named Entity Recognition

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.