Fatou and Julia Sets and Their Basic Properties p. 123
Montel Theorem and Characterization of Fatou and Julia Sets p. 126
Fatou and Julia Sets as: The Good, The Bad, and The Undesirable p. 132
Fatou Components and Their Dynamical Properties p. 135
Critical Points and Connection with Periodic Fatou Components p. 139
Fatou-Julia and Topological Fatou-Julia Graphs: Analogies for Visualization and Conceptualization of Dynamics p. 145
Lakes and Waterfalls: Analogy for Dynamics of Rational Maps p. 150
General Convergence: Algorithmic Limitation of Iterations p. 152
A Summary for the Behavior of Iteration Functions p. 163
Undecidability Issues in Rational Functions p. 164
Fixed Points of the Basic Family p. 171
Introduction p. 171
Properties of the Fixed Points of the Basic Family p. 172
Proof of Main Theorem p. 173
Algebraic Derivation of the Basic Family and Characterizations p. 175
Introduction p. 175
Algebraic Proof of Existence of the Basic Family p. 179
Derivation of Closed Form of the Basic Family p. 183
Two Formulas for Generation of Iteration Functions p. 187
Deriving the Euler-Schroder Family p. 190
Extension to Non-Polynomial Root Finding p. 192
Conclusions p. 193
The Truncated Basic Family and the Case of Halley Family p. 195
The Halley Family p. 195
The Order and Asymptotic Error of Halley Family p. 198
The Truncated Basic Family p. 202
Applications p. 203
Polynomiography with the Truncated Basic Family p. 206
Conclusions p. 206
Characterizations of Solutions of Homogeneous Linear Recurrence Relations p. 207
Introduction p. 208
Homogeneous Linear Recurrence Relations p. 209
Explicit Representation of the Fundamental Solution p. 212
Explicit Representation Via Characteristic Polynomial p. 213
Approximation of Polynomial Roots Using HLRR p. 217
Basic Sequence and Connection to the Basic Family p. 220
The Basic Sequence and the Bernoulli Method p. 226
Determinantal Representation of Fundamental Solution p. 229
Application to Fibonacci Sequence and Generalizations p. 230
Experimental Results Via Polynomiography p. 233
A Representation Theorems for Arbitrary Solutions p. 233
Concluding Remarks

Bounds on Roots of Polynomials and Analytic Functions

Introduction

Estimate to Zeros of Analytic Functions

The Basic Family for General Analytic Functions

Application of Basic Family in Separation Theorems

Estimate to Nearest Zero and Bounds on Zeros

Applications, Asymptotic Analysis, Computational Efficiency and Comparisons

Concluding Remarks

A Geometric Optimization and its Algebraic Offsprings

Introduction

Elementary Proof of the Gauss-Lucas Theorem and the Maximum Modulus Principle

The Gauss Lucas Iteration Function and Extensions of the Maximum Modulus Principle

Conclusions

Polynomiography: Algorithms for Visualization of Polynomial Equations

A Basic Coloring Algorithm

Basic Family and Variants: The Basis of Polynomiography

Many Polynomiographs of Cubic Roots of Unity

Visualization of Homogeneous Linear Recurrence Relations

Introduction

The Generalized Fibonacci, the Hyper Fibonacci, and their Polynomiography

The Induced Basic Family and Induced Basic Sequence

The Fibonacci and Lucas Families of Iteration Functions

Visualization of HLRR with Arbitrary Initial Conditions

Applications of Polynomiography in Art, Education, Science and Mathematics

Polynomiography in Art

Polynomiography as a Tool of Art and Design

Polynomiography Based on Voronoi Coloring

Polynomiography Based on Levels of Convergence

Symmetric Designs from Polynomiography

Polynomiography of Numbers

Some Extensions of Polynomiography

Glossary of Terms

Polynomiography in Education

Polynomiography for Encouraging Creativity in Education

Teacher Survey

Student Survey

Developing Seminars and Courses Based on Polynomiography

Polynomiography in Mathematics and Science

Polynomiography for Measuring the Average Performance of Root-finding Algorithms

Conclusions