Pendulum with torsion and gravity
Model equation for the pendulum chain
Fluxons in Josephson Transmission Lines
The Josephson effect in a short junction
The small Josephson junction
The long Josephson junction as a transmission line
Dissipative effects
Experimental observations of fluxons
Indirect observation
Direct observation
Lattice effects
Josephson equations
Solitons in Optical Fibers
Optical-fiber characteristics
Linear dispersive effects
Nonlinear effects
Effect of losses
Wave-envelope propagation
Bright and dark solitons
Bright solitons
Dark solitons
Experiments on optical solitons
Perturbations and soliton communications
Effect of losses
Soliton communications
Modulational instability of coupled waves
A look at quantum-optical solitons
Some other kinds of optical solitons: spatial solitons
Electromagnetic equations in a nonlinear medium
The Soliton Concept in Lattice Dynamics
The one-dimensional lattice in the continuum approximation
The quasi-continuum approximation for the monatomic lattice
The Toda lattice
Envelope solitons and localized modes
The one-dimensional lattice with transverse nonlinear modes
Motion of dislocations in a one-dimensional crystal
The one-dimensional lattice model for structural phase transitions
The order-disorder transition
The displacive transition
Kink-soliton solutions for generalized on-site potentials
A lattice model with an exact kink-soliton solution
Energy localization in nonlinear lattices p. 250
Self-trapped states: polaron and conformon p. 250
Intrinsic localized modes or discrete breathers p. 251
Observation of discrete breathers p. 253
Discrete pendulum chains p. 253
Mechanical chain with torsion and gravity p. 254
A chain of magnetic pendulums p. 256
Solutions for transverse displacements p. 257
Kink-soliton or domain-wall solutions p. 259
Construction of a double-well potential p. 260
A Look at Some Remarkable Mathematical Techniques p. 262
Lax equations and the inverse scattering transform method p. 262
The Fourier-transform method for linear equations p. 263
The Lax pair for nonlinear evolution equations p. 264
The KdV equation and the spectral problem p. 266
Time evolution of the scattering data p. 267
Discrete eigenvalues p. 267
Continuous spectrum p. 269
The inverse scattering problem p. 270
Discrete spectrum only: soliton solution p. 271
Response of the KdV model to an initial disturbance p. 273
The delta function potential p. 273
The rectangular potential well p. 274
The sech-squared potential well p. 274
The inverse scattering transform for the NLS equation p. 275
The Hirota method for the KdV equation p. 277
The Hirota method for the NLS equation p. 280
Diffusive solitons p. 284
Combined effects of dissipation and nonlinearity p. 285
A diffusive electrical transmission line p. 285
Linear diffusive waves p. 287
Kink-shaped diffusive solitons p. 288
Experiments on electrical diffusive solitons p. 290
Reaction diffusion processes p. 291
Reaction diffusion equations p. 291
A chemical model with reaction diffusion p. 293
An electrical lattice with reaction diffusion p. 296
Experiments with an electrical lattice p. 298
A mechanical analog with diffusive solitons p. 299
Chain with flexion and gravity p. 299
Experimental chain p. 300
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction diffusion processes in lattices</td>
<td>301</td>
</tr>
<tr>
<td>Propagation failure</td>
<td>301</td>
</tr>
<tr>
<td>Discrete reaction diffusion model with exact solution</td>
<td>302</td>
</tr>
<tr>
<td>Derivation of the Burgers equation</td>
<td>303</td>
</tr>
<tr>
<td>Solution of the reaction diffusion equation</td>
<td>304</td>
</tr>
<tr>
<td>Equation of motion of an Euler strut</td>
<td>305</td>
</tr>
<tr>
<td>References</td>
<td>307</td>
</tr>
<tr>
<td>Subject Index</td>
<td>325</td>
</tr>
</tbody>
</table>

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.