Classical (nonquantal, nonrelativistic) many-body problems p. 1
Newton's equation in one, two and three dimensions p. 1
Hamiltonian systems - Integrable systems p. 6
Notes to Chapter p. 16
One-dimensional systems. Motions on the line and on the circle p. 17
The Lax pair technique p. 117
A convenient representation. The functional equation (*) p. 23
A simple solution of the functional equation (*) p. 26
particles on the line, interacting pairwise via repulsive forces inversely proportional to the cube of their mutual distance p. 27
Qualitative behavior p. 27
The technique of solution of Olshanetsky and Perelomov (OP) p. 30
Motion in the presence of an additional harmonic interaction. Extension of the OP technique of solution p. 37
General solution of the functional equation (*). Integrable many-body model with elliptic interactions p. 47
N particles on the line interacting pairwise via a repulsive hyperbolic force. Technique of solution OP p. 53
N particles on the circle interacting pairwise via a trigonometric force p. 61
Various tricks: changes of variables, particles of different types, duplications, infinite duplications (from rational to hyperbolic, trigonometric, elliptic forces), reductions (model with forces only among "nearest neighbors") p. 163
Another convenient representation for the Lax pair. The functional equation (**) p. 180
A simple solution of the functional equation (**) p. 84
Fake Lax pairs p. 186
N particles on the line interacting pairwise via forces equal to twice the product of their velocities divided by their mutual distance p. 90
Technique of solution OP p. 192
Behavior of the solutions: mention of fixture developments p. 94
Can a fake Lax pair be used to solve a nontrivial many-body problem? p. 97
General solution of the functional equation (**) p. 99
Hamiltonian and Newtonian equations for the RS model p. 113
Relativistic character of the RS model p. 115
Newtonian case. Complex extension presumably characterized by completely periodic motions p. 119
Solution via the OP technique in the rational, hyperbolic and trigonometric cases. Completely periodic character of the motion p. 122
Various tricks: changes of variables, duplications, infinite duplications, reductions to "nearest-neighbor" forces, elimination of velocity-dependent forces p. 126
Another Lax pair corresponding to a Hamiltonian many-body problem on the line. The functional equation (***) p. 135
A simple solution of the functional equation (***) p. 138
One-dimensional space (S = 1) p. 330
Two-dimensional space (S = 2) p. 341
Three-dimensional space (S = 3) p. 352
IV-body problems in spaces of one or more dimensions p. 355
One-dimensional examples p. 368
Two-dimensional examples (in the plane) p. 389
Few-body problems in ordinary (3-dimensional) space p. 400
IV-body problems in M-dimensional space, or M(2)-body problems in one-dimensional space p. 404
First-order evolution equations and partially solvable IV-body problems with velocity-independent forces p. 408
Notes to Chapter 3 p. 415

How to obtain by complexification rotation-invariant many-body models in the plane from certain many-body problems on the line p. 418
Example: a family of solvable many-body problems in the plane p. 428
Origin of the model and technique of solution p. 429
The generic model; behavior in the remote past and future p. 432
Some special cases: models with a limit cycle, models with confined and periodic motions, Hamiltonian models, translation-invariant models, models featuring equilibrium and spiraling configurations, models featuring only completely periodic motions p. 435

The simplest model: explicit solution (the game of musical chairs), Hamiltonian structure p. 448
The simplest model featuring only completely periodic motions p. 453
First-order evolution equations, and a partially solvable many-body problem with velocity-independent forces, in the plane p. 456
Examples: other families of solvable many-body problems in the plane p. 459
A rescaling-invariant solvable one-dimensional many-body problem p. 462
A rescaling- and translation-invariant solvable one-dimensional many-body problem p. 467

Another rescaling-invariant solvable one-dimensional many-body problem p. 469
Survey of solvable and/or integrable many-body problems in the plane obtained by complexification p. 471
Example one p. 472
Example two p. 474
Example three p. 476
Example four p. 479
Example five p. 481
Example six p. 482
Example seven p. 485
Example eight p. 489
Example nine p. 491
A Hamiltonian example p. 493
A many-rotator, possibly nonintegrable, problem in the plane, and its periodic motions

Outlook

Notes to Chapter 4

Many-body systems in ordinary (three-dimensional) space: solvable, integrable, linearizable problems

A simple example: a solvable matrix problem, and the corresponding one-body problem in three-dimensional space

Another simple example: a linearizable matrix problem, and the corresponding one-body problem in three-dimensional space

Motion of a magnetic monopole in a central electric field

Motion of a magnetic monopole in a central Coulomb field

Solvable cases of the \((2 \times 2)\)-matrix evolution equation \(U = 2aU + bU + c[U, U]\)

Association, complexification, multiplication: solvable few and many-body problems obtained from the previous ones

A survey of matrix evolution equations amenable to exact treatments

A class of linearizable matrix evolution equations

Some integrable matrix evolution equations related to the non Abelian Toda lattice

Some other matrix evolution equations amenable to exact treatments

On the integrability of the matrix evolution equation \(U = f(U)\)

Parametrization of matrices via three-vectors

A survey of \(N\)-body systems in three-dimensional space amenable to exact treatments

Few-body problems of Newtonian type

Few-body problems of Hamiltonian type

Many-body problems of Newtonian type

Many-body problems of Hamiltonian type

Many-body problems in multidimensional space with velocity-independent forces: integrable unharmonic ("quartic") oscillators, and nonintegrable oscillators with lots of completely periodic motions

Outlook

Notes to Chapter

Elliptic functions

Notes to Appendix A

Functional equations

Notes to Appendix B

Hermite polynomials: zeros, determinantal representations

Notes to Appendix C

Remarkable matrices and related identities

Notes to Appendix D

Lagrangian approximation for eigenvalue problems in one and more dimensions

Notes to Appendix E

Some theorems of elementary geometry in multidimensions
Asymptotic behavior of the zeros of a polynomial whose coefficients diverge exponentially p. 723

Some formulas for Pauli matrices and three-vectors p. 732

References p. 735

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.