Membrane Materials and Membrane Preparation
Introduction p. 3
Membrane Market p. 5
Membrane Preparation p. 9
Phase Inversion p. 10
Presently Available Membranes for Liquid Separation p. 15
Membranes for Reverse Osmosis p. 15
Membranes for Nanofiltration p. 18
Solvent-resistant Membranes for Nanofiltration p. 20
NF Membranes Stable in Extreme pH Conditions p. 22
Membranes for Ultrafiltration p. 23
Polysulfone and Polyethersulfone p. 23
Poly(vinylidene fluoride) p. 26
Polyetherimide p. 28
Polyacrylonitrile p. 30
Cellulose p. 32
Solvent-resistant Membranes for Ultrafiltration p. 32
Membranes for Microfiltration p. 34
Polypropylene and Polyethylene p. 34
Poly(tetrafluoroethylene) p. 36
Polycarbonate and Poly(ethylene terephthalate) p. 37
Surface Modification of Membranes p. 39
Chemical Oxidation p. 39
Plasma Treatment p. 40
Classical Organic Reactions p. 41
Polymer Grafting p. 41
Membranes for Fuel Cells p. 45
Perfluorinated Membranes p. 46
Nonfluorinated Membranes p. 48
Polymer Membranes for High Temperatures p. 51
Organic-Inorganic Membranes for Fuel Cells p. 52
Gas Separation with Membranes p. 53
Introduction p. 53
Materials and Transport Mechanisms p. 53
Organic Polymers p. 55
Background p. 55
Polymers for Commercial Gas-separation Membranes p. 57
Ultrahigh Free Volume Polymers p. 58
Inorganic Materials for Gas-separation Membranes p. 62
Carbon Membranes p. 62
Perovskite-type Oxide Membranes for Air Separation p. 64
Mixed-matrix Membranes

Basic Process Design

Acknowledgments

References

Current Application and Perspectives

The Separation of Organic Vapors from Gas Streams by Means of Membranes

Summary

Introduction

Historical Background

Membranes for Organic Vapor Separation

Principles

Selectivity

Temperature and Pressure

Membrane Modules

Applications

Design Criteria

Off-gas and Process Gas Treatment

Gasoline Vapor Recovery

Polyolefin Production Processes

Applications at the Threshold of Commercialization

Emission Control at Petrol Stations

Natural Gas Treatment

Hydrogen/Hydrocarbon Separation

Conclusions and Outlook

References

Gas-separation Membrane Applications

Introduction

Membrane Application Development

Membrane Selection

Membrane Form

Membrane Module Geometry

Compatible Sealing Materials

Module Manufacture

Pilot or Field Demonstration

Process Design

Membrane System

Beta Site

Cost/Performance

Commercial Gas-separation Membrane Applications

Hydrogen Separations

Helium Separations
Electromembrane Process Application
Electrodialysis
Electrodeionization
Electrochemical Regeneration of Ion-exchange Resin
Synthesis of New Substances without Electrode Reaction Participation:
Bipolar-membrane Applications
Isolation of Chemical Substances from Dilute Solutions
Electrodialysis Applications for Chemical-solution Desalination
Electrochemical Processing with Membranes
Electrochemistry
Chlor-alkali Industry
Perfluorinated Membranes
Process Conditions
Zero-gap Electrode Configurations
Other Electrolytic Processes
Fuel Cells
Electroorganic Synthesis
Electrochemical Oxidation of Organic Wastes
Acknowledgments
List of Symbols
References
Membrane Technology in the Chemical Industry: Future Directions
The Past: Basis for Current Membrane Technology
Ultrathin Membranes
Membrane Modules
Membrane Selectivity
The Present: Current Status and Potential of the Membrane Industry
Reverse Osmosis
Ultrafiltration
Microfiltration
Gas Separation
Refinery Hydrogen Applications
Nitrogen (and Oxygen) Separation from Air
Natural Gas Separations
Vapor/Gas, Vapor/Vapor Separations
Pervaporation
Ion-conducting Membranes
The Future: Predictions for 2020
References
Subject Index

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.