Table of Contents	p.
Preface	xi
Principles of Bioreactor Modelling	1
Nomenclature for Part I	3
Modelling Principles	9
Fundamentals of Modelling	9
Use of Models for Understanding, Design and Optimization of Bioreactors	9
General Aspects of the Modelling Approach	10
General Modelling Procedure	12
Simulation Tools	15
Teaching Applications	15
Development and Meaning of Dynamic Differential Balances	16
Formulation of Balance Equations	21
Types of Mass Balance Equations	21
Balancing Procedure	23
Case A. Continuous Stirred Tank Bioreactor	24
Case B. Tubular Reactor	24
Case C. River with Eddy Current	25
Total Mass Balances	33
Component Balances for Reacting Systems	34
Case A. Constant Volume Continuous Stirred Tank Reactor	35
Case B. Semi-continuous Reactor with Volume Change	37
Case C. Steady-State Oxygen Balancing in Fermentation	38
Case D. Inert Gas Balance to Calculate Flow Rates	39
Stoichiometry, Elemental Balancing and the Yield Coefficient Concept	40
Simple Stoichiometry	40
Elemental Balancing	42
Mass Yield Coefficients	44
Energy Yield Coefficients	45
Equilibrium Relationships	46
General Considerations	46
Case A. Calculation of pH with an Ion Charge Balance	47
Energy Balancing for Bioreactors	49
Case B. Determining Heat Transfer Area or Cooling Water Temperature	52
Basic Bioreactor Concepts	55
Information for Bioreactor Modelling	55
Bioreactor Operation	56
Batch Operation	57
Semicontinuous or Fed Batch Operation	58
Continuous Operation	60
Summary and Comparison	63
Biological Kinetics
Enzyme Kinetics
Michaelis-Menten Equation
Other Enzyme Kinetic Models
Deactivation
Sterilization
Simple Microbial Kinetics
Basic Growth Kinetics
Substrate Inhibition of Growth
Product Inhibition
Other Expressions for Specific Growth Rate
Substrate Uptake Kinetics
Product Formation
Interacting Microorganisms
Case A. Modelling of Mutualism Kinetics
Case B. Kinetics of Anaerobic Degradation
Structured Kinetic Models
Case C. Modelling Synthesis of Poly-[beta]-hydroxybutyric Acid (PHB)
Case D. Modelling of Sustained Oscillations in Continuous Culture
Case E. Growth and Product Formation of an Oxygen-Sensitive Bacillus-subtilis Culture
Bioreactor Modelling
General Balances for Tank-Type Biological Reactors
The Batch Fermenter
The Chemostat
The Fed Batch Fermenter
Biomass Productivity
Case Studies
Case A. Continuous Fermentation with Biomass Recycle
Case B. Enzymatic Tanks-in-series Bioreactor System
Modelling Tubular Plug Flow Bioreactors
Steady-State Balancing
Unsteady-State Balancing for Tubular Bioreactors
Mass Transfer
Mass Transfer in Biological Reactors
Gas Absorption with Bioreaction in the Liquid Phase
Liquid-Liquid Extraction with Bioreaction in One Phase
Surface Biocatalysis
Diffusion and Reaction in Porous Biocatalyst
Interphase Gas-Liquid Mass Transfer
General Oxygen Balances for Gas-Liquid Transfer
Selection of a Control Strategy p. 176
Methods of Designing and Testing the Strategy p. 178
References p. 181
References Cited in Part I p. 181
Recommended Textbooks and References for Further Reading p. 184
Dynamic Bioprocess Simulation Examples and The Berkeley Madonna Simulation Language p. 191

Simulation Examples of Biological Reaction Processes Using Berkeley Madonna p. 193
Introductory Examples p. 193
Batch Fermentation (BATFERM) p. 193
Chemostat Fermentation (CHEMO) p. 199
Fed Batch Fermentation (FEDBAT) p. 204
Batch Reactors p. 209
Kinetics of Enzyme Action (MMKINET) p. 209
Lineweaver-Burk Plot (LINEWEAV) p. 212
Oligosaccharide Production in Enzymatic Lactose Hydrolysis (OLIGO) p. 215
Structured Model for PHB Production (PHB) p. 219
Fed Batch Reactors p. 224
Variable Volume Fermentation (VARVOL and VARVOLD) p. 224
Penicillin Fermentation Using Elemental Balancing (PENFERM) p. 230
Ethanol Fed Batch Diauxic Fermentation (ETHFERM) p. 240
Repeated Fed Batch Culture (REPFED) p. 245
Repeated Medium Replacement Culture (REPLCUL) p. 249
Penicillin Production in a Fed Batch Fermenter (PENOXY) p. 253
Continuous Reactors p. 257
Steady-State Chemostat (CHEMOSTA) p. 257
Continuous Culture with Inhibitory Substrate (CONINHIB) p. 261
Nitrification in Activated Sludge Process (ACTNITR) p. 267
Tubular Enzyme Reactor (ENZTUBE) p. 272
Dual Substrate Limitation (DUAL) p. 275
Dichloromethane in a Biofilm Fluidized Sand Bed (DCMDEG) p. 280
Two-Stage Chemostat with Additional Stream (TWOSTAGE) p. 286
Two Stage Culture with Product Inhibition (STAGED) p. 290
Fluidized Bed Recycle Reactor (FBR) p. 295
Nitrification in a Fluidized Bed Reactor (NITBED) p. 299
Continuous Enzymatic Reactor (ENZCON) p. 305
Reactor Cascade with Deactivating Enzyme (DEACTENZ) p. 308
Production of PHB in a Two-Tank Reactor Process (PHBTWO) p. 314
Oxygen Uptake Systems p. 318
Aeration of a Tank Reactor for Enzymatic Oxidation (OXENZ) p. 318
Gas and Liquid Oxygen Dynamics in a Continuous Fermenter (INHIB) p. 321
Batch Nitrification with Oxygen Transfer (NITRIF) p. 327
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen Uptake and Aeration Dynamics (OXDYN)</td>
<td>331</td>
</tr>
<tr>
<td>Oxygen Electrode for K[subscript L]a (KLADYN, KLAFIT and ELECTFIT)</td>
<td>335</td>
</tr>
<tr>
<td>Biofiltration Column with Two Inhibitory Substrates (BIOFILTDYN)</td>
<td>342</td>
</tr>
<tr>
<td>Optical Sensing in Micrortter Plates (TITERDYN and TITERBIO)</td>
<td>349</td>
</tr>
<tr>
<td>Controlled Reactors</td>
<td>354</td>
</tr>
<tr>
<td>Feedback Control of a Water Heater (TEMPCONT)</td>
<td>354</td>
</tr>
<tr>
<td>Temperature Control of Fermentation (FERMTEMP)</td>
<td>358</td>
</tr>
<tr>
<td>Turbidostat Response (TURBCON)</td>
<td>363</td>
</tr>
<tr>
<td>Control of a Continuous Bioreactor, Inhibitory Substrate (CONTCON)</td>
<td>367</td>
</tr>
<tr>
<td>Diffusion Systems</td>
<td>371</td>
</tr>
<tr>
<td>Double Substrate Biofilm Reaction (BIOFILM)</td>
<td>371</td>
</tr>
<tr>
<td>Steady-State Split Boundary Solution (ENZSPLIT)</td>
<td>377</td>
</tr>
<tr>
<td>Dynamic Porous Diffusion and Reaction (ENZDY)</td>
<td>383</td>
</tr>
<tr>
<td>Oxygen Diffusion in Animal Cells (CELLDIFF)</td>
<td>388</td>
</tr>
<tr>
<td>Biofilm in a Nitrification Column System (NITBEDFILM)</td>
<td>393</td>
</tr>
<tr>
<td>Multi-Organism Systems</td>
<td>400</td>
</tr>
<tr>
<td>Two Bacteria with Opposite Substrate Preferences (COMMENSA)</td>
<td>400</td>
</tr>
<tr>
<td>Competitive Assimilation and Commensalism (COMPASM)</td>
<td>406</td>
</tr>
<tr>
<td>Stability of Recombinant Microorganisms (PLASMID)</td>
<td>411</td>
</tr>
<tr>
<td>Predator-Prey Population Dynamics (MIXPOP)</td>
<td>417</td>
</tr>
<tr>
<td>Competition Between Organisms (TWOONE)</td>
<td>422</td>
</tr>
<tr>
<td>Competition between Two Microorganisms in a Biofilm (FILMPOP)</td>
<td>425</td>
</tr>
<tr>
<td>Model for Anaerobic Reactor Activity Measurement (ANAEMEAS)</td>
<td>433</td>
</tr>
<tr>
<td>Oscillations in Continuous Yeast Culture (YEASTOSC)</td>
<td>441</td>
</tr>
<tr>
<td>Mammalian Cell Cycle Control (MAMMCELLCYCLE)</td>
<td>445</td>
</tr>
<tr>
<td>Membrane and Cell Retention Reactors</td>
<td>451</td>
</tr>
<tr>
<td>Cell Retention Membrane Reactor (MEMINH)</td>
<td>451</td>
</tr>
<tr>
<td>Fermentation with Pervaporation (SUBTILIS)</td>
<td>455</td>
</tr>
<tr>
<td>Two Stage Fermentor With Cell Recycle (LACMEMRECYC)</td>
<td>464</td>
</tr>
<tr>
<td>Hollow Fiber Enzyme Reactor for Lactose Hydrolysis (LACREACT)</td>
<td>470</td>
</tr>
<tr>
<td>Animal Cells in a Fluidized Bed Reactor (ANIMALIMMOB)</td>
<td>477</td>
</tr>
<tr>
<td>Appendix: Using the Berkeley Madonna Language</td>
<td>483</td>
</tr>
<tr>
<td>A Short Guide to Berkeley Madonna</td>
<td>483</td>
</tr>
<tr>
<td>Screenshot Guide to Berkeley Madonna</td>
<td>488</td>
</tr>
<tr>
<td>Alphabetical List of Examples</td>
<td>497</td>
</tr>
<tr>
<td>Index</td>
<td>499</td>
</tr>
</tbody>
</table>

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.