Introduction: The Strange World of Cellular Metals p. 1
Material Definitions, Processing, and Recycling p. 5
Foaming Processes for Al p. 8
Gas Injection: the Cymat/Alcan and Norsk Hydro Process p. 8
In-situ Gas Generation: the Shinko Wire Process and the FORMGRIP process p. 10
The FORMGRIP Process p. 12
Industrialization of Powder-Compact Foaming Technique p. 14
Principles of Foam Production p. 14
Practical Aspects of Foam Production p. 17
Powder selection p. 17
Mixing p. 18
Densification p. 18
Further processing of foamable material p. 19
Foaming p. 19
State of Commercialization p. 20
Making Cellular Metals from Metals other than Aluminum p. 21
Zinc p. 22
Lead p. 22
Titanium p. 22
Steel p. 25
Powder-Compact Foaming Technique p. 25
Steel Foams from Powder-Filler Mixtures p. 27
Recycling of Cellular Metals p. 28
The Remelting of Cellular Metals p. 28
Recycling of Cellular Metal Matrix Composites p. 29
Conclusions p. 32
The Physics of Foaming: Structure Formation and Stability p. 33
Isolated Gas Bubble in a Melt p. 34
Agglomeration of Bubbles: Foam p. 35
Infiltration and the Replication Process for Producing Metal Sponges p. 43
Replication p. 44
The Republication Process: General Principles p. 46
Pattern Preparation p. 46
Infiltration p. 48
Pattern Removal p. 49
Physical and Mechanical Properties of Metal Sponge p. 51
Continuous Refractory Patterns p. 51
Discontinuous Refractory Patterns p. 51
Burnable Patterns p. 53
Leachable Patterns p. 53
Conclusions p. 55
Solid-State and Deposition Methods p. 56
Formation from Single Cells: Coreless Methods p. 58
Hollow-Sphere Structures made from Gas Atomized Hollow Powders p. 58
Hollow-Sphere Structures made from Coaxially Sprayed Slurries p. 59
Formation from Single Cells: Lost Core Methods p. 60
Hollow-Sphere Structures made by Cementation and Sintering p. 60
Hollow-Sphere Structures made from Galvanically Coated Styrofoam Spheres p. 61
Hollow-Sphere Structures made from Fluidized Bed Coated Styrofoam Spheres p. 61
Bulk Formation: Coreless Methods p. 63
Sintered Metal Powders and Fibers p. 63
Methods Utilizing Special Sintering Phenomena p. 64
Foaming of Solids p. 65
Foaming of Slurries p. 67
Bulk Formation: Lost Core Methods p. 67
Powder Metallurgical Space Holder Method p. 67
Deposition Methods p. 68
Secondary Treatment of Cellular Metals p. 71
Forming, Machining, and Coating p. 75
High-Temperature Forming p. 75
Specific Problems in Foam Forming p. 75
Process Sequence for Manufacturing 3D Composites with Aluminum Foam Cores p. 76
Material Behavior at the Solidus p. 77
Forming of Cellular Metals at High Temperatures p. 78
Machining p. 79
Coating p. 79
Mechanical Properties of Spray Deposits p. 80
Specific Difficulties in Foam Coating p. 80
Thermal Sprayed Composites from Metal Foams p. 81
Joining Technologies for Structures Including Cellular Aluminum p. 83
Introduction p. 83
Feasible Joining Technologies p. 83
Mechanical Fastening Elements p. 83
Gluing p. 84
Welding p. 84
Soldering and Brazing p. 85
Foam-Foam Joints p. 87
Foam-Sheet Joints p. 87
Microstructural Investigations p. 88
Mechanical Properties of Foam-Sheet Joints p. 90
Transferability to Structural Parts p. 98
Topological Features p. 141
Characterization of Microstructure of Massive Cell Material p. 141
Conclusions p. 143
Computed X-ray Tomography p. 145
Principle of the Technique p. 145
X-ray Radiography p. 145
X-ray Tomography p. 146
Set-ups p. 147
Medium-Resolution Microtomography p. 147
High-Resolution Microtomography p. 147
Resolution Required for the Study of Metallic Foams p. 148
Reconstruction Method p. 148
Experimental Results p. 148
Initial Cell Structure p. 148
Evolution of the Structure During a Compression Test p. 150
Micromodeling of a Foam by Finite Elements p. 151
Direct Meshing of the Actual Microstructure p. 151
Results p. 152
Conclusions p. 155
Considerations on Quality Features p. 156
Introduction p. 156
Non-Uniformity of Cellular Metals p. 156
Macroscopic Parameters p. 159
Type of Cellular Metal p. 159
Surface and Dimensions p. 159
Apparent Density p. 161
Properties p. 161
Microscopic Features p. 161
Microstructure of the Metal p. 162
Geometrical Features p. 162
Microdefects p. 164
Mesoscopic Features p. 165
Geometry of Cellular Structure p. 165
Density Distribution p. 166
Systematics of Quality Features p. 166
Approximation of a Cellular Structure by a Continuum p. 168
Calculation of Density Maps p. 168
Representation of Non-Uniformity of Densities p. 172
Mesoscopic Basis for Material Modeling p. 174
Proposal of Quality Criteria p. 174
Material Properties p. 179
Influence of Wavy and Curved Cell Walls p. 255
Influence of Irregular Vertex Positions p. 257
Microgeometries Containing Cells of Different Sizes p. 258
Influence of Holes and Solid-Filled Cells p. 260
Influence of Fractured or Removed Cell Walls p. 261
Yield and Collapse Surfaces p. 262
Fracture Simulations for Metallic Foams p. 266
Modeling of Mesoscopic Density Inhomogeneities p. 269
Macroscopic Modeling and Simulation p. 272
Low Energy Impact on Thin Metallic Foam Paddings p. 273
Crushing of Foam-Filled Crash Elements p. 275
Design Optimization for Cellular Metals p. 276
Outlook p. 277
Mesomodel of Real Cellular Structures p. 281
Introduction p. 281
3D Mesomodel p. 284
Elastic Regime p. 285
Plastic Regime p. 285
Modeling of Uniaxial Compression p. 288
Deformation Band p. 289
Mechanical Properties p. 292
Discussion p. 294
Conclusions p. 297
Service Properties and Exploitability p. 299
The Range of Applications of Structural Foams Based on Cellular Metals and Alternative Polymer Solutions p. 299
Introduction p. 299
Potential Areas of Use p. 300
Material Properties p. 300
Main Component Configurations p. 301
Application and Attachment Techniques p. 304
Casting p. 304
Thermal Joining Processes p. 305
Mechanical Joining Processes p. 306
Three-dimensional sandwich p. 306
Alternative Cellular Materials Based on Polymers p. 306
Effectiveness p. 307
Bending and Torsional Stress p. 307
Impact Stresses p. 308
Axial Load p. 309
Acoustics p. 310
Outlook p. 311