Introducing Nuclear Receptors

Linking the Environment to the Human Organism: Nuclear Receptors as Mediators of the Action of Endocrine-active Compounds (EACs)

How Nuclear Receptors Work

Environmental Chemicals and Adverse Effects on Human Health

Reproductive Diseases and Fertility

Testicular Dysgenesis Syndrome and Spermatogenesis

Female Dysfunctions and EACs/EDCs

Obesity and Obesogens

Conclusion

References

The Experimental 3D Structure of Nuclear Receptors. A Starting Point for Computational Investigations?

Introduction

Flexible Proteins

Experimental Determination of Structure

Computational Tools and Challenges

Nuclear Receptors

A Closer Look at Structure and Function

Survey of Current Experimental Structural Data

Mechanism of Action: Insight from Ligand Binding

Issues for Structure-based Drug Design in Nuclear Receptors

References

Protein Structure Analysis with Constraint Programming

Introduction

A Constraint Programming Primer

Constraint Satisfaction Problems

Search

Constraint Optimization Problems

Constraint Programming-based Applications

Protein-related Space Models

Lattice Space Models

Off-lattice Space Models

Conclusion and Future Directions

Acknowledgements

References

Molecular Dynamics: a Tool to Understand Nuclear Receptors

Nuclear Receptors: Overview of the Ligand Binding Domain

Molecular Dynamics and Protein Flexibility

Prediction of Binding Affinities by Free Energy Calculations

Exploring Pathways and Mechanism of Drug Binding