Introduction: Heritage Microbiology, Science and the Mary Rose: What are we trying to achieve? Introduction

Background

Conference Themes and the Mary Rose

What are we trying to achieve? Conclusion

Heritage Monuments and Materials

Heritage Research and Practice: Towards a better understanding? Introduction

Evaluation of Biodeterioration Processes

Biodeterioration Mechanisms

Exogenic Parameters

Biofilm - A Stabilising Microniche

Environmental Conditions for Biodeterioration Processes

Microbiological Assessment of Biodeterioration Impacts

Microbiology and Archaeology - Case Studies

Terracotta Army in Xian / China (Polychrome Coatings)

Nydam Mose / Denmark (Metals)

Temple of Angkor Wat, Cambodia (Natural Stone)

Archaeological Site of Milet in Turkey (Waterlogged Marble)

Prospective Needs for an Interdisciplinary Approach in Conservation Microbiology

Mapping Decay: GIS, Microbes and Stone Degradation across Scales

Introduction

Geographical Information Systems

Use of Images for Classifying Degradation

Illustrations of Mapping Degradation in a GIS

Conclusions

Microbial Colonisation of Historic Buildings in Latin America

Introduction

Methods;Sites and Sampling

Detection and Identification

Results and Discussion

Analysis of Bacterial Communities on an Antique Stained Glass Window

Introduction

Methods and Results

Deterioration on the window "Natività"

Sampling, Growth Conditions and Phenotypical Characterization

Molecular Characterization

Conclusions

Assessing the Suitability of Novel Biocides for use on Historic Surfaces

Introduction

Methods and Results

Compatibility of Novel Treatments with Conservation Products

Tests on Sandstone
MDA-PCR Amplifications
DNA Library Screening
Detection and Analysis of Chimeras
Analysis Based on DNA and RNA
Further Perspectives
Bacteria in Archaeological and Waterlogged Wood: Molecular Protocols for Diversity and Community Studies
Introduction
Waterlogged Wood and its Microbiology
Extraction of Nucleic Acids from Wood
Overcoming Low Quantities of Impure Nucleic Acids
PCR and the Separation of Mixed-Origin PCR Products
Fluorescent in Situ Hybridisation and Waterlogged Wood
Conclusions
Synchrotron Radiation for the Investigation of Objects of Cultural Heritage Value
Introduction
Synchrotron Radiation
Examples of Synchrotron Science as Applied to Heritage Materials
Archaeological Iron
Erosion of Carbonate Building Materials
Textile Fibres from the Qumran Caves
Corinthian Style Helmet from Ancient Greece
Conclusions
Summary
Fluorescent in Situ Hybridization (FISH) as Molecular Tool to Study Bacteria causing Biodeterioration
Introduction
FISH Applied to the Study of Biodeterioration of Works of Art
Limits and Advantages of FISH to Study Microbial Communities associated with Biodeterioration
Methods that Enhance the Signal
Identification of Bacteria from Waterlogged Archaeological Wood
Introduction
Method and Results
Sampling
Cultivation
DNA-Based Identification
DNA Extraction
PCR Amplification and Construction of 16S rDNA Clone Libraries and T-RFLP Community Fingerprinting
Sequencing of 16S rDNA Inserts and Phylogenetic Analysis
Conclusions
Summary
Novel Combined Approach Based on Phospholipid Fatty Acids and 16S-rDNA PCR-SSCP Analyses to Characterise Fouling Biofilms on Historic Monuments

Introduction

Culture-Independent Approaches to Characterise Microbial Communities

Materials and Methods
Site Description
Sample Collection
Biomarker Analysis
DNA Extraction, PCR-SSCP and Sequencing of DNA
Digital Image Analysis
Nucleic Acid and Phylogenetic Analyses Results
Biofilm Biomass and PLFA Profiles
Discussion
Biomass and Diversity of Epilithic Biofilms
Conclusions

On the Use of 23S rRNA Gene Sequences to Assess a High Diversity of Acidobacteria in Altamira Cave

Introduction

Materials and Methods
Sampling and DNA Extraction
Amplification of Acidobacterial rDNA and Construction of Clone Libraries
Phylogenetic Analyses and Tree Reconstruction based on rDNA Sequences
Results and Discussion
Conclusions

Historic Ships and their Preservation
The In-Situ Preservation of Archaeological Sites Underwater: An Evaluation of some Techniques

Introduction

Why In-Situ Preservation? Threats to Underwater Archaeological Heritage
Measuring the Extent of Deterioration
Examples of Techniques used for In-Situ Protection
The "Polders", The Netherlands
Red Bay, Canada
The Bzn Wrecks, The Netherlands
The Darsser Cog, Germany
The Avondster, Sri Lanka
Roman Quay, The Netherlands
Thirteenth Century Wreck, Denmark
William Salthouse, Australia
The Zakynthos Wreck, Greece
Colossus, United Kingdom
James Matthews, Australia
Fredericus (Raar-Project), Sweden
Conclusions and Future Directions
Molecular Bacterial Diversity in the Timbers of the Tudor Warship the Mary Rose
Introduction
Role of Bacteria in the Sulfur and Iron Cycles
Molecular Diversity of Bacteria associated with Buried and Raised Ship Timbers
Conclusions
Timber Conservation on Nelson's Flagship HMS Victory
Introduction
Original Construction
The Early Years
Into Drydock 1922
Restoration and Repair in the 1920s
The 1955-64 Great Repair
Completion of the Great Repair 1964 - 2000
Timber Supply
Concluding Comments
Summary
Informing the Conservation, Display and Long-Term Preservation of the HMS Victory
Trafalgar Sail
Introduction
The Performance of the Canvas
Conservation and Display
Condition Monitoring
Nuclear Magnetic Relaxometry
Near Infrared Spectroscopy (NIR)
Conclusions
Extraction of Iron Compounds from Waterlogged Pine Wood from the Vasa
Introduction
Materials and Methods
Chemicals
Extraction Procedures
Analyses
Results and Discussion
Co-Extraction of other Compounds
Effects on the Wood
Conclusions
Summary
Electrolysis in the Conservation of Large Artefacts: The M33 and the s.v.Cutty Sark

Introduction
Soak Treatment
Electrolytic Treatment
Electrolysis in Conservation
Electrolysis of the M33
Electrolysis of the s.v. Cutty Sark
Conclusions
Summary
Desiccated Storage of Chloride-Contaminated Iron: A Study of the Effects of Loss of Environmental Control
Introduction
Corrosion and Electrolytes
ss Great Britain: A big Corrosion Problem
Implementation of Environmental Control
Chloride-Infested Iron: Corrosion and Corrosion Products
Chloride on the Iron Hull of the ss Great Britain
Modelling Iron Corrosion during Drying of Chloride-Infested Iron
Environmentally-Controlled Storage in Practice
Experimental
Results
FeCl2. 4H2O/ Iron Powder Mix: 15%-22% Relative Humidity (Figure 4)
FeCl2.4H2O/ Iron Powder Mix: 15%-30% Relative Humidity (Figure 5)
-FeOOh/Iron Powder Mix: 15%-22% Relative Humidity (Figure 6)
FeOOh/Iron Powder Mix: 15%-30% Relative Humidity (Figure 7)
FeCl2. 4H2O/Iron Powder Mix: 22%- 65% Relative Humidity (Figure 8)
Discussion
Endnote
Microbiology and Art: An Education Opportunity
Introduction
Applied Microbiology
Microbiology and Art
Deterioration of Art
Beauty of Microorganisms
Microorganisms in Art
Combining Microbiology and Art
Microbiology And...
Concluding Remarks
Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.