Process Fundamentals and Operator Safety
Setting the Scene
Wetting
Capillary Flow
Health and Safety in Brazing
Where Brazing Fits in Joining Technology
Which Specific Process Should Be Used?
What Are the Advantages of Brazing?
Basic Definitions and Principles
Capillary Attraction and Capillary Flow
Solidus, Liquidus, Melting Range and Eutectic
Working Temperature
Liquation
Process Window
Heat Pattern Development
Procedures
Component Cleanliness
Summary: Fundamental Rules for Successful Brazing
Joint Design Fundamentals
Introduction
Basic Joint Design Configurations
Atmosphere Furnace Brazing
Filler Materials, Fluxes and Brazing Paste Fundamentals
Introduction
Aluminium-Base Filler Materials
Silver-Base Filler Materials
Self-Fluxing CuP and AgCuP Alloys
Copper-Brazing Filler Materials
High-Temperature Nickel (and Cobalt) Filler Materials
Unclassified Platinum-Group Metal Filler Alloys
ISO Standardised Noble-Metal-Bearing Filler Materials
Brazing Fluxes
Brazing Alloy Pastes
Brazing with Flames
Torches for Manual Flame Brazing
Flame Process Relationships
Heating with Flames
Gases and Gas Mixtures
Hand-Torch-Brazing Technique
Automated Flame-Brazing Machines
Process Complexity
Induction and Resistance Heating
Introduction
What Induction Heating offers in Brazing
Commonly Used Inductor Shapes
Design of Joints and the Associated Inductors
Resistance Heating
Furnace Brazing
Introduction
Oxide Films
Brazing in a Reducing Atmosphere
Types of Furnaces Used for Brazing
Brazing in Vacuum
Vacuum Brazing Process Parameters
Further General Comments on Vacuum Brazing
Vapour Pressure
Brazing Aluminium
Introduction to the Technology of Aluminium Brazing
Use of Brazing for the Joining of Aluminium and its Alloys
Troubleshooting and Some Common Brazing Problems
Identification of the Problem
Methodology of Troubleshooting
Are You Asking Yourself the Right Questions?
Flexibility
Seeking Advice
Frequently Asked Questions
Is It Possible to Braze Ceramics?
Can I Braze to the Surface of an Electroplated Item?
Which Filler Material Will Be Best for the Brazing of Tungsten Carbide Teeth to Circular Saw Blades?
Can Brass Be Successfully Brazed without Flux in a Reducing-Atmosphere Furnace?
Can Contact with Ammonia Result in the Corrosion of a Joint?
What Is the Maximum Temperature at Which a Brazed Joint Can Be Safely Used?
Can Tool Steels Be Brazed?
What Is Crevice Corrosion?
What Is the Trillium Project?
Accreditation of Brazing Operators
Scope
Normative References
Approval of the Parts to Be Joined by Brazing
Terms and Definitions
Information and Requirements to be both agreed upon and Documented
Brazing Variables
The pBPS
Stage 4: Approval of Operators
Test Pieces and Test Specimens
Examination and Testing
Range of Approval
Brazing Procedure Approval Record
Importance of the Joint Gap in Brazing
Some Initial Points about Brazing When a Flux Is Used
Some Initial Points about Fluxless Brazing Processes
Contribution of the Brazing Gap to Process Control
Brazing in conjunction with Flux
Process Parameters for the Use of Flux
High-Temperature Brazing in conjunction with a Flux
Fluxless Brazing Processes
Filler Metal Pre-Placement: Sandwich Joints
Conventional Pre-Placement of Filler Material
Glossary
SafeFlame®
Selection Charts
Filler Metal Comparison Tables
Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.