Table of Contents
List of Figures p. i
List of Tables p. v
Preface p. xi
Acknowledgement p. xiii
Introduction p. xv
Situations of Research p. 1
Research Objectives p. 4
Outline of this Book p. 4
Analysis and Design Considerations of Switched-Opamp Techniques p. 7
Introduction p. 7
Minimum Supply Voltage for SC Circuits p. 8
Low-Voltage Solutions for SC Circuits p. 9
Original Switched-Opamp Technique p. 10
Multi-Phase Switched-Opamp Technique p. 12
Analysis of Parasitic-Sensitive Switched-Capacitor and Switched-Opamp Integrators p. 16
Analysis of Conventional Parasitic-Insensitive SC Integrators p. 16
Analysis of Conventional Parasitic-Insensitive Integrators Using Original Switched-Opamp Technique p. 20
Analysis of Conventional Parasitic-Insensitive Integrators Using Multi-Phase Switched-Opamp Technique p. 26
Performance Comparisons of Switched-Capacitor and Switched-Opamp Integrators p. 35
Conclusion p. 38
System Considerations for Switched-Opamp Circuits p. 39
Introduction p. 39
Principle of the Double-Sampling Technique p. 40
Settling Problems of Opamps in Conventional Double-Sampling SC Architecture p. 42
Proposed Fast-Settling Double-Sampled Generic SC Biquadratic Filter p. 43
Proposed Half-Delay-SC-Integrator-Based Generic SC Biquadratic Filter p. 45
Proposed Half-Delay-SC-Integrator-Based SC Ladder Filter p. 50
Proposed Half-Delay-SC-Integrator-Based SC Lowpass [Sigma Delta] Modulator with Noise-Shaping Extension p. 54
Conclusion p. 61
Circuit Implementation and Layout Considerations for Switched-Opamp Circuits p. 63
Introduction p. 63
Opamp Design Considerations for Switched-Opamp Circuits p. 63
Design Review of Switchable Opamps p. 66
Design of Switchable Opamp by Switching Bias Current p. 66
Design of Switchable Opamp by Disconnecting from Power Rails p. 67
Design of Switchable Opamp by Switching Output Stage p. 68
A Proposed Fast-Switching Methodology for the Design of Switchable Opamp p. 69
Layout Considerations for Switched-Capacitor Systems p. 70
Layout Floorplan for Switched-Capacitor Circuits p. 70
Layout Technique for Matching Capacitors p. 71
Layout Considerations for Minimizing Switching Noise Effect p. 72
Layout Considerations for Minimizing Parasitic Capacitive Loading to Opamp p. 73
Conclusion p. 74
Design of a Switched-Capacitor Pseudo-2-Path Filter Using Multi-Phase Switched-Opamp Technique p. 75
Introduction p. 75
N-Path and Pseudo-N-Path Filters p. 76
N-Path Filter p. 76
Pseudo-N-Path Filter p. 79
Z to -Z[^N] Transformation Using RAM-Type SC Pseudo-N-Path Integrator p. 80
Design of a 1-V Switched-Opamp SC Pseudo-2-Path Filter p. 82
Circuit Implementation p. 85
Experimental Results p. 87
Conclusion p. 94
Design of Low-Power and High-Frequency Switched-Opamp Circuits p. 95
Introduction p. 95
Bandpass [Sigma Delta] Modulator Topology p. 96
Fast-Settling Double-Sampled SC Resonator p. 97
1-V Double-Sampling Finite-Gain-Compensation Technique p. 98
Realization of DSFGC Bandpass [Sigma Delta] Modulator p. 102
Design of Low-Voltage Building Blocks p. 104
Current-Mirror Operational Amplifier p. 104
1-V Switchable Current-Mirror Opamp with Dual Time-Multiplexed Output Stages p. 106
Current-Injected Common-Mode Feedback Circuit p. 108
1-V Latch-Type Comparator p. 109
1-V D-Flip-Flop p. 110
Experimental Results p. 111
Conclusion p. 116
Design of Low-Power and High-Level Integrated Switched-Opamp Circuits
Introduction p. 117
System Description p. 118
Design of 1-V Switched-Opamp Biquadricatic Filter p. 120
Design of 1-V Switched-Opamp Ladder Filter p. 121
Design of 1-V Switched-Opamp Lowpass [Sigma Delta] Modulator with Noise-Shaping Extension p. 123
Quadrature Channels Optimization p. 124
Circuits Implementation p. 126
Experimental Results p. 127
Conclusion p. 134