Preface
New Carbon Materials for Supercapacitors

Subject Overview
Novel Carbonaceous Materials for Application in the Electrochemical Supercapacitors

Effect of Carbonaceous Materials on Performance of Carbon-Carbon and Carbon-Ni Oxide Types of Electrochemical Capacitors with Alkaline Electrolyte

Hybrid Supercapacitors Based on a-MnO2/Carbon Nanotubes Composites

Development of Supercapacitors Based on Conducting Polymers

Supercapacitors: Old Problems and New Trends

Modeling Porosity Development During KOH Activation of Coal and Pitch-Derived Carbons for Electrochemical Capacitors

General Properties of Ionic Liquids as Electrolytes for Carbon-Based Double Layer Capacitors

Carbon Materials for Gas Diffusion Electrodes, Metal Air Cells and Batteries

Subject Overview
New Concept for the Metal-Air Batteries Using Composites: Conducting Polymers/Expanded Graphite as Catalysts

Mechanically Rechargeable Magnesium-Air Cells with NaCl-Electrolyte

Application of Carbon-Based Materials in Metal-Air Batteries: Research, Development, Commercialization

Metal - Air Batteries with Carbonaceous Air Electrodes and Nonmetallic Catalysts

Carbon Anodes for Lithium-Ion Batteries

Subject Overview
Carbonaceous Materials for Batteries

Anode-Electrolyte Reactions in Li Batteries: The Differences Between Graphitic and Metallic Anodes

Performance of Novel Types of Carbonaceous Materials in the Anodes of CLAiO's Lithium-Ion Battery Systems

Why Graphite Electrodes Fail in PC Solutions: An Insight from Morphological Studies

New Developments in the Advanced Graphite for Lithium-Ion Batteries

Mechanisms of Reversible and Irreversible Insertion in Nanostructured Carbons Used for Li-Ion Batteries

Some Thermodynamics and Kinetics Aspects of the Graphite-Lithium Negative Electrode for Lithium-Ion Batteries

Characterization of Anodes Based on Various Carbonaceous Materials for Application in Lithium-Ion Cells

A Carbon Composite for the Negative Electrode of Li-Ion Batteries

Electrochemical Intercalation of PF and BF into Single-Walled Carbon Nanotubes

Surface Treated Natural Graphite as Anode Material for High-Power Li-Ion Battery Applications

Emerging Metal/Carbon Composite Anodes for Next Generation Lithium-Ion Batteries

Subject Overview
On The Theoretical Prerequisites for Application of Novel Materials in Promising Energy Systems
Capabilities of Thin Tin Films as Negative Electrode Active Materials for Lithium-Ion Batteries
Composite Anode Materials for High Energy Density Lithium-Ion Batteries
Electrochemical Activity of Carbons Modified by d-Metal Complexes with Ethanolamines
Metal-Graphite Composites as Materials for Electrodes of Lithium-Ion Batteries
Electrochemical Performance of Ni/Cu-Metallized & Carbon-Coated Graphites for Lithium Batteries
Subject Overview
Stabilization of Graphite Nitrate via Co-intercalation of Organic Compounds
Electrochemical Stability of Natural, Thermally Exfoliated and Modified Forms of Graphite towards Electrochemical Oxidation
Low Temperature Synthesis of Graphite from Iron Carbide
High Resolution Transmission Electron Microscopy Image Analysis of Disordered Carbons Used for Electrochemical Storage of Energy
Electrolytes of Carbamide-Chloride Me
Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.