Equivalence of two mappings with respect to a measure p. 65
Image measure p. 69
Proofs p. 72
Exercises p. 78
Solutions p. 78
Integral p. 87
Definition p. 87
Integral of a nonnegative step function p. 87
Integral of a nonnegative measurable function p. 92
Integral of a measurable function p. 97
Properties p. 100
Integral of \(\mathcal{F}\)-equivalent functions p. 102
Integral with respect to a weighted sum of measures p. 104
Integral with respect to an image measure p. 106
Convergence theorems p. 107
Lebesgue and Riemann integral p. 108
Density p. 110
Absolute continuity and the Radon-Nikodym theorem p. 112
Integral with respect to a product measure p. 114
Proofs p. 115
Exercises p. 124
Solutions p. 125
Probability. Random Variable, and its Distribution p. 131
Probability measure p. 133
Probability measure and probability space p. 133
Definition p. 133
Formal and substantive meaning of probabilistic terms p. 134
Properties of a probability measure p. 134
Examples p. 135
Conditional probability p. 138
Definition p. 138
Filtration and time order between events and sets of events p. 139
Multiplication rule p. 141
Examples p. 142
Theorem of total probability p. 143
Bayes' theorem p. 144
Conditional-probability measure p. 145
Independence p. 149
Independence of events p. 149
Independence of set systems p. 150
Conditional independence given an event p. 151
Random vector and random matrix p. 235
Expectation of a random vector and a random matrix p. 235
Covariance matrix of two multivariate random variables p. 237
Multiple linear quasi-regression p. 238
Proofs p. 240
Exercises p. 245
Solutions p. 245
Some distributions p. 254
Some distributions of discrete random variables p. 254
Discrete uniform distribution p. 254
Bernoulli distribution p. 255
Binomial distribution p. 256
Poisson distribution p. 258
Geometric distribution p. 260
Some distributions of continuous random variables p. 262
Continuous uniform distribution p. 262
Normal distribution p. 264
Multivariate normal distribution p. 267
Central X^2-distribution p. 271
Central t-distribution p. 273
Central F-distribution p. 274
Proofs p. 276
Exercises p. 280
Solutions p. 281
Conditional Expectation and Regression p. 285
Conditional expectation value and discrete conditional expectation p. 287
Conditional expectation value p. 287
Transformation theorem p. 290
Other properties p. 292
Discrete conditional expectation p. 294
Discrete regression p. 295
Examples p. 296
Proofs p. 301
Exercises p. 302
Solutions p. 302
Conditional expectation p. 305
Assumptions and definitions p. 305
Existence and uniqueness p. 307
Uniqueness with respect to a probability measure p. 308
A necessary and sufficient condition of uniqueness p. 309
Examples p. 310
Linear logistic regression and linear logit regression

Proofs

Exercises

Solutions

Conditional expectation with respect to a conditional-probability measure

Introductory examples

Assumptions and definitions

Properties

Partial conditional expectation

Factorization

Conditional expectation value with respect to P^B

Uniqueness of factorizations

Uniqueness

A necessary and sufficient condition of uniqueness

Uniqueness with respect to P and other probability measures

Necessary and sufficient conditions of P-uniqueness

Properties related to P-uniqueness

Conditional mean independence with respect to P^{Z=z}

Proofs

Exercises

Solutions

Effect functions of a discrete regressor

Assumptions and definitions

Intercept function and effect functions

Implications of independence of X and Z for regression coefficients

Adjusted effect functions

Logit effect functions

Implications of independence of A' and Z for the logit regression coefficients

Proofs

Exercises

Solutions

Conditional Independence and Conditional Distribution

Conditional independence

Assumptions and definitions

Two events

Two sets of events

Two random variables

Properties

Conditional independence and conditional mean independence

Families of events

Families of set systems