Preface to the Second Edition
Preface to the First Edition
Introduction p. 1
Overview p. 1
Radar Systems p. 3
Electromagnetics p. 5
RCS Phenomenology p. 7
Absorbing Materials p. 9
Measurements p. 11
Basic Definitions p. 13
Summary p. 20
Radar Fundamentals p. 23
History of Radar Development p. 23
Radar Frequency Bands p. 25
Radar System Fundamentals p. 27
The Radar Range Equation p. 44
Radar Detection p. 47
Radar System Performance Examples p. 54
Electronic Countermeasures p. 59
Physics and Overview of Electromagnetic Scattering p. 63
Radar Cross Section Definition p. 64
Fundamental Scattering Mechanisms p. 74
Scattering Regimes p. 82
Electromagnetic Theory p. 90
Exact Prediction Techniques p. 115
Classical Modal Solutions p. 116
Integral Equation Solutions p. 121
Phenomenology: Surface Currents, Near Fields, and Imaging p. 140
Differential Equation Solutions p. 160
Comparisons with High-Frequency Solutions p. 174
High-Frequency RCS Prediction Techniques p. 183
Geometric Optics p. 185
Physical Optics p. 189
Geometrical Theory of Diffraction p. 200
A Uniform Asymptotic Theory p. 203
The Method of Equivalent Currents p. 206
The Physical Theory of Diffraction p. 209
The Incremental Length Diffraction Coefficient p. 214
The Surface Traveling Wave p. 216
Phenomenological Examples of Radar Cross Section p. 225
Specular Scattering p. 230