Preface p. xi
Executive Committee p. xii
Session Chairs p. xiii
International Committee p. xiv

Conventional and Rock Tunneling
High Speed Excavation by Drill & Blast with Mechanized Mucking System-Mitholz Railway Tunnels, Switzerland p. 2
Lake Dorothy Hydroelectric Project Lake Tap and Tunnel, Juneau, AK p. 12
Underground Construction for a Combined Sewer Overflow System in Providence p. 22
Modern Caverns in Gotham-Geotechnical and Design Challenges for Large Rock Caverns in Manhattan p. 35
Tunneling Under the Harlem River p. 48

Design and Planning
Bay Tunnel-Design Challenges p. 60
The Selection of Excavation Methods for the Detroit Upper Rouge Tunnel CSO Control Project p. 72
Planning and Design Features of the Waller Creek Tunnel, Austin, Texas p. 86
NATM Strategies in the U.S. -Lessons Learned from the Initial Support Design for the Caldecott 4th Bore p. 96
The Price is Right-Planning Large Water Tunnel Contracts In New York p. 108
Daylighting Thorn Creek Tunnel into Chicago's TARP Thornton Composite Reservoir p. 123

Difficult Ground
Times Square Connection: "Supporting the Cross Roads of the World" p. 134
Gibe II Tunnel Project-Ethiopia: 40 Bars of Mud Acting on the TBM "Special Designs and Measures Implemented to Face One of the Most Difficult Events in the History of Tunneling" p. 151

Design and Construction of the Lenihan Dam Outlet Tunnel and Shaft p. 171
Daniel Island Surprise-Sand Lens Lurking In Cooper Marl, Charleston, SC p. 185
San Vicente Pipeline Tunnel-Reach 4W, 3, and 2: Case History p. 195
A Review of Tunneling Difficulties in Carbonate Sedimentary Rocks p. 215

Geotechnical
Geotechnical Baseline Reports-A Review p. 232
Ground Characterization for CSO Tunnels in Washington, D.C p. 242
Actual vs. Baseline Tracking During TBM Tunneling in Highly Variable Glacial Geology p. 250
Assessing Ground Ahead of TBM Tunnel Using Low-Interruption Wireless Seismic Reflector Tracing System p. 263
Ground Characterization and Feasibility Evaluation of Tunneling Methods for Mather Interceptor p. 272

Ground Modification
North 27th Street ISS Extension: Unique Owner/Contractor Agreement Settles Major Disputes p. 286
Brightwater Conveyance System: Ground Freezing for Access Shaft Excavation Through Soft Ground p. 297
New Approach of ASFINAG for Tunnel Construction Monitoring of the Tauern Tunnel Project in Austria

Research in Soil Conditioning for EPB Tunneling Through Difficult Soils

An Analysis Method for Modeling Compensation of Settlements Due to Tunnel Driving by Grouting Cement Suspensions

Innovation

Extensible Conveyor Systems for Long Tunnels Without Intermediate Access

New Cutter Soil Mixing (CSM) Technology Used to Construct Microtunneling Shafts for Mokelumne River Crossing

An Introduction to Virtual Design and Construction (VDC)

Placement of Concrete Lining for Water Tunnel No. 3, Manhattan Portion

International

The Hallandsås Dual Mode TBM

Effective Planning of Underground Space-Planning and Implementation of the First Underground Water Reservoirs in Hong Kong

Hobson and Rosedale Tunnels-New Technology In Auckland

Feasibility and Implementation of Shield Machine Tunnel Passing Through an Operating Airport Runway

Experience Gained in Mechanical and Conventional Excavations in Long Alpine Tunnels in Switzerland

Las Vegas

Design and Construction of Lake Mead Intake No. 3 Shafts and Tunnel

Project Delivery Selection for Southern Nevada's Lake Mead Intake No. 3

Design and Subsurface Construction at Yucca Mountain, Nevada

Feasible Tunnel Construction Options for the Systems Conveyance and Operations Program Reach 3 Tunnel

What Happens in Vegas: The Apex Tunnel Geologic Investigation

The Cost and Benefit of the Phase 2 Investigation for the Reach 4 Tunnel, How a Roll of the Dice Came Up Big in Las Vegas

Microtunneling

Microtunneling 1.2-Mile

The Longest Drive-Portland's CSO Microtunnels

Microtunnels vs. EPB Risk-Based Selection

Microtunneling Challenges in Soft Ground of Downtown Hartford, CT

Microtunneling for Utilities Under Harold Railroad Interlocking

Mining

Technical Challenges in Mine Rehabilitation

Open Pit TBM Driven Drainage Tunnel-Ok Tedi Mine

The Deep Underground Science and Engineering Laboratory and the Construction of Physics Megacaverns

Subsurface Repository Ventilation Design

New Projects 1

Planning New Metro Subways-Los Angeles
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurry TBM Tunnel in Rock, the Modified Detroit River Outfall No. 2</td>
<td>675</td>
</tr>
<tr>
<td>Port of Miami Tunnel Update-A View from Design Builder's Engineer</td>
<td>687</td>
</tr>
<tr>
<td>Design Considerations and Evaluation Process for a New Tunnel and Ocean Outfall Project</td>
<td>700</td>
</tr>
<tr>
<td>MBTA Silver Line Phase III-Completes Boston's Newest Transit Line</td>
<td>713</td>
</tr>
<tr>
<td>New Projects 2</td>
<td></td>
</tr>
<tr>
<td>Design of NATM Tunnels and Stations of Silver Line Phase III Project in Boston</td>
<td>728</td>
</tr>
<tr>
<td>Geotechnical and Structural Design Challenges of the Fremont Central Park Subway for the BART Warm Springs Extension</td>
<td>742</td>
</tr>
<tr>
<td>Atlanta North-South Tunnel</td>
<td>757</td>
</tr>
<tr>
<td>Proposed Contracting Practices for the Caltrain Downtown Extension</td>
<td>766</td>
</tr>
<tr>
<td>New York City</td>
<td></td>
</tr>
<tr>
<td>Alternative Final Cavern Linings for the East Side Access Transit Project</td>
<td>780</td>
</tr>
<tr>
<td>Continuing the Legacy: An Update on the Construction of the New Second Avenue Subway</td>
<td>790</td>
</tr>
<tr>
<td>No. 7 Subway Extension Crossing Under an Existing Subway Station: Challenges and Integration of Underpinning into the Design of New Tunnels</td>
<td>802</td>
</tr>
<tr>
<td>Railroad Interface Management for MTA East Side Access Project Tunnels and Structures</td>
<td>814</td>
</tr>
<tr>
<td>Construction of the MCUA Tunnel and Force Mains Under the Raritan River, New Jersey: A Case History</td>
<td>824</td>
</tr>
<tr>
<td>Risk Management</td>
<td></td>
</tr>
<tr>
<td>Hindsight Is 20/20-Reverse Engineering Tunnel Risk Analyses</td>
<td>836</td>
</tr>
<tr>
<td>Getting the Engineer's Estimate Right</td>
<td>845</td>
</tr>
<tr>
<td>Transfer of a Project Risk Register from Design into Construction: Lessons Learned from the WSSC Bi-County Water Tunnel Project</td>
<td>854</td>
</tr>
<tr>
<td>The Delivery of Underground Construction Projects in the UK: A Review of Good Practice</td>
<td>861</td>
</tr>
<tr>
<td>Using Risk Analysis to Support Decision Making on the Central Subway Project</td>
<td>871</td>
</tr>
<tr>
<td>Short Tunnels = High Risk?: Pipeline Construction Involving Open-Cut and Tunnel Segments</td>
<td>881</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
</tr>
<tr>
<td>Case History of the Wachovia-Knight Theater Pedestrian Tunnels</td>
<td>894</td>
</tr>
<tr>
<td>Boggo Road Busway Project, Brisbane, Australia</td>
<td>906</td>
</tr>
<tr>
<td>Loosening and Face Stability with Shallow Overburden in the "SITINA Tunnel," Bratislava, Slovakia</td>
<td>916</td>
</tr>
<tr>
<td>Innovative NATM-Design for a Large Shallow Cavern at Stanford</td>
<td>927</td>
</tr>
<tr>
<td>ADECO as an Alternative to NATM: How It Works, Why It Works</td>
<td>942</td>
</tr>
<tr>
<td>Shaft</td>
<td></td>
</tr>
<tr>
<td>New Technology Changes Blind Shaft Drilling</td>
<td>970</td>
</tr>
<tr>
<td>Tamerlane Hoist and Vertical Belt Project</td>
<td>975</td>
</tr>
<tr>
<td>A Small Diameter Shaft Design Alternative</td>
<td>986</td>
</tr>
<tr>
<td>Kansas River Tunnel Shaft Drilling</td>
<td>998</td>
</tr>
</tbody>
</table>
Design Considerations for the Use of Slurry Walls as Permanent Walls for Deep Rectangular Shaft Structures in Seismic Areas-Silicon Valley Rapid Transit Project

Slurry and EPB 1

Selection, Design, and Procurement of North America's Largest Mixshield TBM for Portland, Oregon's East Side CSO Tunnel

Construction of Drilled Shafts for the Upper Northwest Interceptor, Sections 1&2 Project-Sacramento, CA

Port Authority of Alleghany County North Shore Connector Project Tunnels and Station Shell Case History Contracts 003 and 006

Construction of the North Dorchester Bay CSO Storage Tunnel in High Risk Tunneling Adjacent to Large Water Tank on the UNWI Sections 3&4 Project

Construction Works of Large-Section Vertically Parallel Twin Tunnels in Close Proximity

A Practical Approach for Precast Concrete Segmental Ring Selection

Slurry and EPB 2

Big Walnut Outfall Augmentation Sewer-Part II: TBM Case History

EPB Tunnelling Through Cohesionless Saturated Ground Under Very Shallow Cover-Perth New MetroRail City Project

Sao Paulo Metro Project-Control of Settlements in Variable Soil Conditions Through EPB Pressure and Bicomponent Backfill Grout

Planning and Preparation for Tunneling at Brightwater West

Brightwater East-A Case History

Gotthard-Base Tunnel, Section Faido Previous Experience with the Use of the TBM

TBM Case Studies 1

TBM Tunneling at the Ashlu Hydropower Project, Squamish, BC

TBM and NATM Combined Solution for a Very Deep Tunnel-The "Pajares" Case Enrique

8 m Diameter 7 km Long Beles Tailrace Tunnel (Ethiopia) Bored and Lined in Basaltic Formations in Less than 12 Months

Construction of Louisville Water Company's Riverbank Filtration Tunnel and Pump Station Project

Technical Considerations for TBM Tunneling in the Andes

Robbins 10m Double Shield Tunnel Boring Machines on Srisailam Left Bank Canal Tunnel Scheme, Alimineti Madhava Reddy Project, Andhra Pradesh, India

TBM Case Studies 2

Madiq Tunnel, Lebanon: TBM Tunneling vs. Karst Geology

Onsite Assembly and Hard Rock Tunneling at the Jinping-II Hydropower Station Power Tunnel Project

Double Shield TBM in Challenging, Difficult Ground Conditions-A Case Study from Zagros Long Water Transfer Tunnel

Impacts of Ground Convergence on TBM Performance in Ghomroud Tunnel

TBM Data Management and Quality Assurance for the Brightwater Conveyance Project

Construction of the East Side Access Manhattan Tunnels

Index