Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview

Coordinating Supercritical Fluid and Solid-Phase Extraction with Chromatographic and Immunoassay Analysis of Herbicides

A High-Performance Liquid Chromatography-Based Screening Method for the Analysis of Atrazine, Alachlor, and Ten of Their Transformation Products

Factors Influencing the Specificity and Sensitivity of Triazine Immunoassays

Standardization of Immunoassays for Water and Soil Analysis

In Situ Derivation-Supercritical Fluid Extraction Method for the Determination of Chlorophenoxy Acid Herbicidesin Soil Samples

Application of In Vivo Fluorometry To Determine Soil Mobility and Soil Adsorptivity of Photosynthesis-Inhibiting Herbicides

Interactions Between Atrazine and Smectite Surfaces

Estimation of the Potential for Atrazine Transport in a Silt Loam Soil

The Effect of Ammonia on Atrazine Sorption and Transport

Fate of Symmetric and an Asymmetric Triazine Herbicide in Silt Loam Soils

Fate of Atrazine and Atrazine Degradates in Soils of Iowa

Transport of Nutrients and Postemergence-Applied Herbicides in Runoff from Corrugation Irrigation of Wheat

Potential Movement of Certain Pesticides Following Application to Golf Courses

Relation of Landscape Position and Irrigation to Concentrations of Alachlor, Atrazine, and Selected Degradates in Regolith in Northeastern Nebraska

The Environmental Impact of Pesticides Degradates in Groundwater

Herbicide Mobility and Variation in Agricultural Runoffin the Beaver Creek Watershed in Nebraska

Monitoring Pesticides and Metabolites in Surface Water and Ground water in Spain

Hydroxylated Atrazine Degradation Products in a Small Missouri Stream

Assessment of Herbicide Transport and Persistence in Groundwater: A Review

Cyanazine, Atrazine, and Their Metabolites as Geochemical Indicators of Contaminant Transport in the Mississippi River

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.