Simplification of Incompletely Specified Functions
Simplification Using Map-Entered Variables
Conclusion
Multi-level gate circuits: nand and nor gates
Multi-Level Gate Circuits
NAND and NOR Gates
Design of Two-Level Circuits Using NAND and NOR ?Gates
Design of Multi-Level NAND and NOR Gate Circuits
Circuit Conversion Using Alternative Gate Symbols
Design of Two-Level, Multiple-Output Circuits Determination of Essential Prime
Implicants for Multiple-Output Realization
Multiple-Output NAND and NOR Circuits
Combinational circuit design and simulation using gates
Review of Combinational Circuit Design
Design of Circuits with Limited Gate Fan-In
Gate Delays and Timing Diagrams
Hazards in Combinational Logic
Simulation and Testing of Logic Circuits
Multiplexers, decodes, and programmable logic devices
Introduction
Multiplexers
Three-State Buffers
Decoders and Encoders
Read-Only Memories
Programmable Logic Devices
Complex Programmable Logic Devices
Field Programmable Gate Arrays
Introduction to vhdl
VHDL Description of Combinational Circuits
VHDL Models for Multiplexers
VHDL Modules
Signals and Constants
Arrays
VHDL Operators
Packages and Libraries
IEEE Standard Logic
Compilation and Simulation of VHDL Code
Latches and flip-flops
Introduction
Set-Reset Latch
Gated D Latch
Edge-Triggered D Flip-Flop
S-R Flip-Flop
J-K Flip-Flop
T Flip-Flop
Flip-Flops with Additional Inputs
Summary
Registers and counters
Registers and Register Transfers
Shift Registers
Design of Binary Counters
Counters for Other Sequences
Counter Design Using S-R and J-K Flip-Flops
Derivation of Flip-Flop Input Equations-Summary
Analysis of clocked sequential circuits
A Sequential Parity Checker
Analysis by Signal Tracing and Timing Charts
State Tables and Graphs
General Models for Sequential Circuits
Derivation of state graphs and tables
Design of a Sequence Detector
More Complex Design Problems
Guidelines for Construction of State Graphs
Serial Data Code Conversion
Alphanumeric State Graph Notation
Reduction of state tables state assignment
Elimination of Redundant States
Equivalent States
Determination of State Equivalence Using an Implication Table
Equivalent Sequential Circuits
Incompletely Specified State Tables
Derivation of Flip-Flop Input Equations
Equivalent State Assignments
Guidelines for State Assignment
Using a One-Hot State Assignment
Sequential Circuit Design
Summary of Design Procedure for Sequential Circuits
Design Example-Code Converter
Design of Iterative Circuits
Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.