Introduction
What is Design for Manufacture and Assembly?
How Does DFMA Work?
Reasons for Not Implementing DFMA
What Are the Advantages of Applying DFMA During Product Design?
Typical DFMA Case Studies
Overall Impact of DFMA on U.S. Industry
Conclusions
References
Selection of Materials and Processes
Introduction
General Requirements for Early Materials and Process Selection
Selection of Manufacturing Processes
Process Capabilities
Selection of Materials
Primary Process/Material Selection
Systematic Selection of Processes and Materials
References
Product Design for Manual Assembly
Introduction
General Design Guidelines for Manual Assembly
Development of the Systematic DFA Methodology
Assembly Efficiency
Classification Systems
Effect of Part Symmetry on Handling Time
Effect of Part Thickness and Size on Handling Time
Effect of Weight on Handling Time
Parts Requiring Two Hands for Manipulation
Effects of Combinations of Factors
Effect of Symmetry for Parts that Severely Nest or Tangle and May Require Tweezers for Grasping and Manipulation
Effect of Chamfer Design on Insertion Operations
Estimation of Insertion Time
Avoiding Jams During Assembly
Reducing Disc-Assembly Problems
Effects of Obstructed Access and Restricted Vision on Insertion of Threaded Fasteners of Various Designs
Effects of Obstructed Access and Restricted Vision on Pop-Riveting Operations
Effects of Holding Down
Manual Assembly Database and Design Data Sheets
Application of the DFA Methodology
Further Design Guidelines
Machining Using Single-Point Cutting Tools
Machining Using Abrasive Wheels
Standardization
Choice of Work Material
Shape of Work Material
Machining Basic Component Shapes
Assembly of Components
Accuracy and Surface Finish
Summary of Design Guidelines
Cost Estimating for Machined Components
References
Design for Injection Molding
Introduction
Injection Molding Materials
The Molding Cycle
Injection Molding Systems
Injection Molds
Molding Machine Size
Molding Cycle Time
Mold Cost Estimation
Mold Cost Point System
Estimation of the Optimum Number of Cavities
Design Example
Insert Molding
Design Guidelines
Assembly Techniques
References
Design for Sheet Metalworking
Introduction
Dedicated Dies and Pressworking
Press Selection
Turret Pressworking
Press Brake Operations
Design Rules
References
Design for Die Casting
Introduction
Die Casting Alloys
The Die Casting Cycle
Die Casting Machines
Die Casting Dies
Finishing
Auxiliary Equipment for Automation
Determination of the Optimum Number of Cavities
Determination of Appropriate Machine Size
Die Casting Cycle Time Estimation
Die Cost Estimation
Assembly Techniques
Design Principles
References
Design for Powder Metal Processing
Introduction
Main Stages in the Powder Metallurgy Process
Secondary Manufacturing Stages
Compaction Characteristics of Powders
Tooling for Powder Compaction
Presses for Powder Compaction
Form of Powder Metal Parts
Sintering Equipment Characteristics
Materials for Powder Metal Processing
Contributions to Basic Powder Metallurgy Manufacturing Costs
Modifications for Infiltrated Materials
Impregnation, Heat Treatment, Tumbling, Steam Treatment, and Other Surface Treatments
Some Design Guidelines for Powder Metal Parts
References
Design for Sand Casting
Introduction
Sand Casting Alloys
Basic Characteristics and Mold Preparation
Sand Cores
Melting and Pouring of Metal
Cleaning of Castings
Cost Estimating
Design Rules for Sand Castings
Example Calculations
References
Design for Investment Casting
Introduction
Process Overview
Pattern Materials
Pattern Injection Machines
Pattern Molds
Pattern and Cluster Assembly
The Ceramic Shell-Mold
Ceramic Cores
Pattern Meltout
Pattern Burnout and Mold Firing
Knockout and Cleaning
Cutoff and Finishing
Pattern and Core Material Cost
Wax Pattern Injection Cost
Fill Time
Cooling Time
Ejection and Reset Time
Process Cost per Pattern or Core
Estimating Core Injection Cost
Pattern and Core Mold Cost
Core Mold Cost
Pattern and Cluster Assembly Cost
Number of Parts per Cluster
Pattern Piece Cost
Cleaning and Etching
Shell Mold Material Cost
Investing the Pattern Cluster
Pattern Meltout
Burnout, Sinter, and Preheat
Total Shell Mold Cost
Cost to Melt Metal
Raw Base Metal Cost
Ready-to-Pour Liquid Metal Cost
Pouring Cost
Final Material Cost
Breakout
Cleaning
Cutoff
Design Guidelines
References
Design for Hot Forging
Introduction
Characteristics of the Forging Process
The Role of Flash in Forging
Forging Allowances
Preforming During Forging