Preface p. xiii
Introduction to Biomimetic Intelligent Robots p. 1
Introduction p. 2
Historical precursors p. 2
Modern perspectives p. 4
Nature as a Model for Inspiration p. 6
The Process of Biomimetic Design p. 10
Themes of Biomimetic Design p. 11
Biomimetic structures and actuators p. 11
Believable and realistic animation p. 13
Human augmented technologies p. 14
Technologically enhanced humans p. 15
Biomimetic robots p. 17
Applications p. 20
Summary and Outlook p. 21
Acknowledgment p. 22
References p. 22
Biological Inspiration for Musclelike Actuators of Robots p. 25
Biological Inspiration p. 26
Muscle: A Prime Mover p. 27
Muscle Metrics p. 28
Force, strain and speed p. 29
Capacity to do work p. 30
Realized performance; the work-loop technique p. 31
Electroactive Polymers as Artificial Muscles p. 31
Historical review and currently available active polymers p. 32
Comparison between electroactive polymer actuators and biological muscle p. 33
Morphology: Tuned to the Task p. 35
Reducing weight p. 35
Trading force for distance and speed p. 37
Elastic mechanisms p. 38
Controlling a multisegmented body with linear actuators p. 39
Concluding Remarks p. 40
References p. 41
Biomimetic Animated Creatures p. 47
Introduction: A Lesson from Dogs and Cats p. 48
The Intentional Stance p. 50
Desires p. 50
Beliefs p. 51
Actions p. 52
Principles of Expressive Animation p. 53
Touch and pressure
Proprioception
Smell and taste
Electric field
Fluid flow
Magnetic field
Sound
Acceleration, gravity, and angular velocity
Actuators
Sound
Light emission and reflectance
Mechanical force and motion
Actuator Technologies
Pneumatics
Hydraulic actuators
Electrical actuators
Electromagnetic motors
Artificial muscles
Power Supplies
Reference energy densities
Batteries
Fuel cells
Hydrogen peroxide
Summary
References
Biomimetic Robot Control
Architectures for Robot Control
Reactive control
Deliberative control
Hybrid control
Behavior-based control
Design and coordination of behaviors
A brief comparison of architectures
Adaptation and learning
Demonstrations and applications
Summary
Humanoid Upper-Body Control
Motivation
A biomimetic approach
Related work on imitation
Choosing the set of primitives
Aesthetic and structural elements of robots p. 371
Component technologies of robots p. 372
Low-level control of biomimetic robots p. 373
Cognitive modeling of robots p. 373
Future biomimetic robots p. 374
Concluding Words p. 376
Acknowledgments p. 378
References p. 378
Index p. 381
Author and Editor Biographies p. 387

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.