Conference Committee

Introduction

Accessing nano- to femtosecond molecular relaxation phenomena for fluorescence imaging through double-pulse saturation excitation p. 2

Improved resolution in PSAF imaging p. 12

Aperture correlation approach to confocal microscopy p. 21

Optimization of the design of a multiple-photon excitation laser scanning fluorescence imaging system p. 25

Ultraviolet Mirau correlation microscopy p. 30

Optimization of the enhanced evanescent wave for near-field microscopy p. 42

Comparison of 3D microscopy methods by imaging a well-characterized test object p. 52

Interferometric computed microtomography of 3D phase objects p. 64

Quantitative DIC microscopy using a geometric phase shifter p. 72

Extinction coefficient in confocal polarization microscopy p. 82

Confocal interference microscopy p. 85

Comparison of experiment and theory for finite-sized multiple-aperture arrays in direct-view microscopy p. 90

Novel reflected light confocal profilometer p. 101

Application of image restoration methods for confocal fluorescence microscopy p. 114

Superresolution MAP algorithms applied to fluorescence imaging p. 125

Trade-offs in regularized maximum-likelihood image restoration p. 136

Restoration of three-dimensional quasi-binary images from confocal microscopy and its application to dendritic trees p. 146

Subpixel resolution in maximum-likelihood image restoration p. 158

Edge detection: conventional operators vis-a-vis wavelets p. 169

Solid state photon counters for scanned image acquisition: thermal and electronic saturation effects p. 178

Three-dimensional animation with conventional light microscopy p. 190

Studying virus structure using the computer-aided phase microscope Airyscan p. 199

Three-dimensional imaging through millimeter-thick tissue specimens p. 208

Image reconstruction for three-dimensional transmitted-light DIC microscopy p. 220

Restoration of edges under Poisson noise using convex constraints with application to confocal microscopy p. 232

Forward-scattering particle image velocimetry (FSPIV): application of Mie and imaging theory to measure 3D velocities in microscopic flows using partially coherent illumination and high-aperture optics p. 243

Principles for modeling and functional simulation of biological microstructures p. 255

Using an adjustable detection time to correct photobleaching effects in fluorescence microscopy p. 262

Addendum p. 273

Author Index p. 274

Table of Contents provided by Blackwell’s Book Services and R.R. Bowker. Used with permission.