Conference Committee
Passive millimeter wave sensors for detection of buried mines p. 2
Co- and cross-polarizations for mine detection p. 7
Antipersonnel mine detection by using polarimetric microwave imaging p. 14
Design and performance of a polarimetric random noise radar for detection of shallow buried targets p. 20
Developmental GPR mine detection technology known as the balanced bridge p. 31
Army Research Laboratory ultrawideband testbed radar and comparisons of target data with models p. 42
SAR imaging of minelike targets over ultrawide bandwidths p. 54
Advanced mine detection radar p. 70
Measurement results from the technology assessment for Close-In Man Portable Mine Detection (CIMMD) program p. 76
Wideband ground-penetrating radar portable data acquisition system p. 84
Detecting UXO: putting it all into perspective p. 94
Detection of buried land mines using ground-penetrating radar p. 100
Detection of surface and buried mines with a UHF airborne SAR p. 110
Multifaceted evaluation methodology for UXO detection and identification p. 121
Near-field synthetic aperture imaging of buried objects and fluids p. 132
Characterization of diurnal and environmental effects on mines and the factors influencing the performance of mine detection ATR algorithms p. 140
Multisensor fusion for the detection of mines and minelike targets p. 152
Phenomenology considerations for hyperspectral mine detection p. 159
Three-dimensional imaging at 10.6 [mu]m to detect surface-laid mines p. 168
Multispectral IR signature polarimetry for detection of mines and unexploded ordnance (UXO) p. 180
Long-range airborne detection of small floating objects p. 193
Mine detection technologies essential to survivability p. 206
Minefield image synthesis tool p. 208
Statistical parametric signature/sensor/detection model for multispectral mine target detection p. 222
Figure of merit algorithm for underwater object distortion p. 239
Methods used in evaluating multispectral camera resolution for land mine detection p. 249
Application of synthetic imagery to target detection algorithm research p. 259
Underwater detection using coherent imaging techniques p. 273
Mine detection using instantaneous spectral imaging p. 286
AOTF polarimetric hyperspectral imaging for mine detection p. 305
Application of multispectral imaging system analysis to surface target detection p. 312
Identification of surface-laid mines by classification of compact airborne spectrographic imager (CASI) reflectance spectra p. 324
Image restoration techniques using Compton backscatter imaging for the detection of buried land mines p. 336
High area rate reconnaissance (HARR) and mine reconnaissance/hunter (MR/H) exploratory development programs p. 350
Magnetic dipole localization using the gradient rate tensor measured by a five-axis magnetic gradiometer with known velocity p. 357

Scanned-beam x-ray source technology for photon backscatter imaging technique of mine detection: advanced technology research p. 368

Superconducting magnetic sensors for mine detection and classification p. 374

Unique man-portable five-element fluxgate gradiometer system p. 384

Multiple cathode scanning x-ray source technology for x-ray mine detection techniques: advanced technology research p. 396

Detection technologies for mines and minelike targets p. 404

Adaptive configuration and control in an ATR system p. 409

Adaptive multispectral CFAR detection of land mines p. 421

Mine detection using wavelet processing of electro-optic active sensor data p. 433

Sea mine detection and classification using side-looking sonar p. 442

Fractal-based image processing for mine detection p. 454

Markov random-field-based anomaly screening algorithm p. 466

Adaptive filter for mine detection and classification in side-scan sonar imagery p. 475

Underwater electro-optical system for mine identification p. 487

Coastal Battlefield Reconnaissance and Analysis (COBRA) program for minefield detection p. 500

Model-based sensor fusion for minefield detection p. 509

Identifying minefields in clutter via collinearity and regularity detection p. 519

Wavelet approach to detect discontinuities of intensity functions for minefield classification p. 531

Detection of random minefields in clutter p. 543

Empirical Bayes classification rules for minefield detection p. 556

Pattern minefield detection from inexact data p. 568

Graphs on uniform points in $[0, 1]^d$ p. 575

Linear density algorithm for patterned minefield detection p. 586

Algorithm for real-time detection of minefields in monochromatic airborne imagery p. 594

Mine countermeasures (MCM) sensor technology drivers p. 608

Mine discrimination using multispectral imagery with feedforward neural networks p. 614

Mine boundary detection using Markov random field models p. 626

Center-surround filters for the detection of small targets in cluttered multispectral imagery: Part 1. Background and filter design p. 637

Performance assessment at the Jefferson Proving Ground: demonstration of systems for the detection and identification of buried unexploded ordnance p. 649

Extremal methods in mine detection and classification p. 667

Mine target detection using a principal component and neural networks method p. 675

Target detection utilizing neural networks and modified high-order correlation method p. 687

Distributed sensing and probing with multiple search agents: toward system-level land mine detection solutions p. 698

Integrated image compression and detection for minelike objects p. 712

Automated adaptation for ATR algorithms p. 724
Software requirements and support for image-algebraic analysis, detection, and recognition of small targets p. 736
Khoros, coupled with a SIMD processor, provides a standard environment for mine detection algorithm evaluation p. 748
Center-surround filters for the detection of small targets in cluttered multispectral imagery: Part 2. Analysis of errors and filter performance p. 756
Automatic detection of minelike targets in severely cluttered images with other man-made objects p. 767
Application of multivariate Gaussian detection theory to known non-Gaussian probability density functions p. 788
Physics-based sensor effects prediction applied to a multispectral mine detection algorithm p. 798
Signal-to-noise improvement by employment of a generalized signal detection algorithm p. 811
Multistage processing for automatic minefield detection using low-frequency SAR p. 823
Detection of minelike targets using grayscale morphological image reconstruction p. 836
Multispectral image fusion for detecting land mines p. 850
Demonstration of an automatic target recognition algorithm simulation and evaluation testbed for mine detection algorithms p. 865
Wavelets and principal component analysis for detection of underwater magnetic objects p. 871
Development of automatic target recognition for infrared sensor-based close-range land mine detector p. 881
Plastic mine polarization signatures p. 890
Training minimal artificial neural network architectures for subsoil object detection p. 900
Modeling of the balanced bridge mine detection sensor using the transmission line matrix (TLM) technique p. 912
Optical correlators for minelike target detection p. 924
Modeling of the separated-aperture mine detection sensor using the transmission line matrix (TLM) technique p. 934
Simple interpretation of time domain electromagnetic sounding using similarities between wave and diffusion propagation p. 942
Sensor point spread function effects on the statistics of multispectral target signatures p. 948
ODESA: an intelligent unexploded ordnance detection application p. 964
New designs for mines and toxic wastes to greatly enhance detection p. 976
Introduction to the local enhancement of underwater imagery p. 990
Bionic sonar for classifying sonar targets p. 1003
Detection and identification of mines from natural magnetic and electromagnetic resonances p. 1015
Histogram equalization, image registration, and data fusion for multispectral images p. 1025
Addendum p. 1032
Author Index p. 1034
Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.