List of Figures

List of Tables

Contributing Authors

Foreword

Introduction

Motivation, context and objectives

Analysis and simulation of RF subsystems

Steady-state analysis

Harmonic Balance and Shooting

Fast Methods

Multitime analysis

Autonomous Systems: the Warped MPDE

Macromodelling time-varying systems

Noise in RF design

Mixing noise

Phase Noise

Conclusions

References

FAST: an efficient high-level dataflow simulator of mixed-signal front-ends of digital telecom transceivers

High-level models of front-end blocks

Multirate multicarrier (MRMC) representation of signals

Computation of the response to an MRMC signal

Combinatorial approach

Fourier transform approach

Construction of a computational graph

Scheduling and execution

Coupling of FAST with the digital simulation environment OCAPI

Runtime examples

Influence of the buffer size on the CPU time

Processing of nonlinear blocks

Conclusions

References

Efficient high-level simulation of analog telecom frontends

Situating the exponential approach within a global framework for simulation algorithms

Basic ideas behind simulation

An overview of some existing simulation algorithms

The complex damped exponential approach

The complex damped exponential basis and its signal modeling capabilities

A simulation approach using complex damped exponentials

Elementary arithmetics using exponentials
Behavioral models for top-down design p. 116
Synthesizer models for transceiver functional-level design p. 118
Top-down behavioral-level models for synthesizer design p. 119
Illustration: settling time evaluation during top-down design p. 121
Behavioral models for bottom-up verification p. 122
Accurate nonlinear model of the local oscillator p. 123
Illustration: phase noise evaluation of a complete frequency synthesizer at the verification stage p. 125
Summary p. 128
References p. 128

Nonlinear Symbolic Network Analysis: Algorithms and Applications to RF Circuits p. 131
Algorithm p. 132
Terminology p. 132
Description of the algorithm fundamentals p. 133
Nonlinearity stamps for 2nd- and 3rd-order analysis p. 137
Implementation of the algorithm p. 139
Error control algorithm p. 141
Error tolerances p. 142
Applications of nonlinear symbolic analysis p. 143
Two-stage miller-compensated opamp p. 143
Downconverting mixer p. 149
Conclusions p. 151
References p. 151

Approaches to Formal Verification of Analog Circuits p. 155
Formal Verification: The Alternative Approach p. 155
Design Flow p. 156
Circuit Description p. 157
Circuit Classes p. 158
Other Approaches p. 159
Linear Dynamic Systems p. 160
Linear Circuit Description p. 160
Basic Algorithm p. 160
Outer Enclosure p. 160
Inner Enclosure p. 162
Safe Path Between Two Points p. 162
Inner Enclosure of a Value Set Using Curvature Examination p. 164
Extended Algorithm Including Frequency Interval p. 165
Example: gmC-Filter p. 166
Circuit Description p. 166
Experimental Results p. 168
Nonlinear Static Systems under Parameter Tolerances p. 168
Algorithm p. 168