Preface p. vii
Basic facts in p-adic analysis p. 1
p-adic numbers p. 1
Field extensions p. 6
Maximum term of power series p. 9
Weierstrass preparation theorem p. 14
Newton polygons p. 21
Non-Archimedean meromorphic functions p. 25
Nevanlinna theory p. 33
Characteristic functions p. 33
Growth estimates of meromorphic functions p. 38
Two main theorems p. 42
Notes on the second main theorem p. 47
‘abc’ conjecture over function fields p. 53
Waring’s problem over function fields p. 58
Exponent of convergence of zeros p. 65
Value distribution of differential polynomials p. 68
Uniqueness of meromorphic functions p. 77
Adams-Straus’ uniqueness theorems p. 77
Multiple values of meromorphic functions p. 80
Uniqueness polynomials of meromorphic functions p. 83
Unique range sets of meromorphic functions p. 88
The Frank-Reinders’ technique p. 92
Some urscm for M(k) and A (k) p. 99
Some ursim for meromorphic functions p. 104
Unique range sets for multiple values p. 111
Differential equations p. 115
Malmquist-type theorems p. 115
Generalized Malmquist-type theorems p. 119
Further results on Malmquist-type theorems p. 123
Admissible solutions of some differential equations p. 125
Differential equations of constant coefficients p. 131
Dynamics p. 139
Attractors and repellers p. 139
Riemann-Hurwitz relation p. 145
Fixed points of entire functions p. 148
Normal families p. 151
Montel’s theorems p. 155
Fatou-Julia theory p. 163
Properties of the Julia set p. 167
Iteration of \(z \rightarrow z^{[d]} \) p. 169