<table>
<thead>
<tr>
<th>Award Presentations</th>
<th>p. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications of Silicon Micromachining to Resonator Fabrication</td>
<td>p. 2</td>
</tr>
<tr>
<td>1/f Noise Universality in High-Technology Applications</td>
<td>p. 8</td>
</tr>
<tr>
<td>Piezoelectric Resonator Materials</td>
<td>p. 22</td>
</tr>
<tr>
<td>Measurements of Acoustic Wave Attenuation in [actual symbol not reproducible] Using HBAR Technique</td>
<td>p. 35</td>
</tr>
<tr>
<td>Stress-Induced Optical Activity in Piezoelectric Crystals and Internal Stresses</td>
<td>p. 40</td>
</tr>
<tr>
<td>Method of Control in Quartz, Langasite, Lithium Niobate Crystals</td>
<td>p. 43</td>
</tr>
<tr>
<td>Langasite [actual symbol not reproducible] An Optical Piezoelectric: Growth and Properties</td>
<td>p. 48</td>
</tr>
<tr>
<td>Study of Gallium Phosphate and Langasite Crystals and Resonators by X-Ray Topography</td>
<td></td>
</tr>
<tr>
<td>Bulk Wave Propagation and Energy Trapping in the New Thermally Compensated Materials with Trigonal Symmetry</td>
<td>p. 58</td>
</tr>
<tr>
<td>Growth of Crack-Free 3-Inch Diameter Lithium Tetraborate Single Crystals by Czochralski Method</td>
<td>p. 72</td>
</tr>
<tr>
<td>Defects in the Bridgman Grown Lithium Tetraborate of Three-Inch Diameter</td>
<td>p. 78</td>
</tr>
<tr>
<td>An Improved Resonator Method for the Determination of Piezoelectric Material Constants</td>
<td>p. 85</td>
</tr>
<tr>
<td>A New Method for the Determination of Concentrations of Impurities in Quartz Crystals</td>
<td>p. 91</td>
</tr>
<tr>
<td>Growth of High Quality Quartz Crystal and its Application to Temperature Sensors</td>
<td>p. 99</td>
</tr>
<tr>
<td>Outgassing of Quartz</td>
<td>p. 107</td>
</tr>
<tr>
<td>High-Temperature Acoustic Loss of AT-Cut Quartz Crystals</td>
<td>p. 115</td>
</tr>
<tr>
<td>Generation of Micro-Domains in AT-Cut Quartz by Thermal Processing and the Effect on Resonator Modes</td>
<td>p. 122</td>
</tr>
<tr>
<td>Design and Performance of CMOS Micromechanical Resonator Oscillators</td>
<td>p. 127</td>
</tr>
<tr>
<td>Micromachined Thin Film Bulk Acoustic Resonators</td>
<td>p. 135</td>
</tr>
<tr>
<td>Dynamic Deflection and Capacitance of Micromachined Piezoelectric Benders</td>
<td>p. 139</td>
</tr>
<tr>
<td>A Study of Quartz Tuning Fork Resonators in the Overtone Mode</td>
<td>p. 142</td>
</tr>
<tr>
<td>Analysis of a Piezoelectric Composite Microcantilever for Accelerometer Applications</td>
<td>p. 149</td>
</tr>
<tr>
<td>An Analysis of Transversely Varying Thickness Modes in Trapped Energy Resonators with Shallow Contours</td>
<td>p. 172</td>
</tr>
<tr>
<td>A Perturbation Method for Modeling the Thermal Sensitivity of Surface Transverse Wave (STW) Propagation on a Piezoelectric Substrate</td>
<td>p. 184</td>
</tr>
<tr>
<td>Two-Dimensional Equations for Guided Electromagnetic Waves in Anisotropic Dielectric Plates Surrounded by Free Space</td>
<td>p. 192</td>
</tr>
<tr>
<td>The Effect of Thermal Dissipation in the Vibrations of a Piezoelectric Body</td>
<td>p. 201</td>
</tr>
<tr>
<td>Computer Analysis of the Characteristics of High-Frequency Quartz Resonators</td>
<td>p. 209</td>
</tr>
<tr>
<td>Reliable Quadratic for Frequency-Turnover Temperature vs. Orientation of Rotated Y-Cut Quartz Plate Resonator Oscillating in C-Mode</td>
<td>p. 223</td>
</tr>
<tr>
<td>Inclusion of Non-Uniform Distribution of Motion Effects in the Transmission-Line Analogs of the Piezoelectric Plate Resonator: Theory and Experiment</td>
<td>p. 229</td>
</tr>
</tbody>
</table>
Improved [omega]-Scan for Separate Measurement of True AT-Cutting Angles and
X-Miscutting Angles for Round Quartz Blanks p. 237

Alternatives to Ozone Depleting Substances in Electronic Cleaning p. 241

Polishing and Etching Langasite and Quartz Crystals p. 245

Submicron Fabrication Technology Using Electro-Chemical Effects and Application to
GHz-range Unidirectional SAW Transducers p. 251

Measurement of Temperature Characteristics of Two-Dimensional Surface Charge
Patterns of Spurious Modes in Rectangular Quartz Plates p. 255

Origin and Measurement of Quartz Resonator Magnetic Sensitivity p. 260

Measurement of Spurious Resonances of Crystal Units Using Network Analyzers with
Error Correction p. 268

Test Oscillator for Study of Drive Level Dependence of Quartz Crystals p. 273

Method and Devices for Measuring Driving Power of Quartz Crystal Units p. 281

Implementing ISO9000 in a Small Company p. 286

SAW Devices on Lithium Tetraborate [actual symbol not reproducible] p. 289

Leaky SAW Propagation Properties on [actual symbol not reproducible] Substrates p. 296

Lithium Tetraborate as a Promising Material for BAW Filters p. 301

Sensitivity Analysis of One Port and Two Port BAW and SAW Resonator Model Parameters p. 308

An Analysis of the SAW Displacements in Quartz and Lithium Niobate by X-Ray Topography p. 315

Theoretical Analysis of Thermal Frequency Behavior of a SAW Device Being Caused by
Laser Beam Irradiation and its Dependence on Angle of Cut p. 323

SAW Ring Filters with Insertion Loss of 1 dB p. 330

A SAW Resonator Filter Exploiting RMSCs p. 337

Micro-Directional Couplers for Frequency Selection p. 343

Extreme Pressure-Sensitive Cuts for Surface Acoustic Waves in [alpha]-Quartz p. 345

Designing Smaller SAW Oscillators for Low Vibration Sensitivity p. 352

Dynamic and Static Pressure Sensitivities of AQP SAW Oscillators p. 359

Design and Performance of an Extremely Low Noise Surface Acoustic Wave Oscillator p. 365

Impedance Element SAW Filters p. 374

Surface Transverse Wave Oscillators with Extremely Low Thermal Noise Floors p. 379

Highly Sensitive SAW Sensors p. 395

Chemical/Biological Contaminant Detector for Aqueous Environments: Preliminary
Report p. 401

High Frequency Monolithic Crystal Filters (MCF) Using Piezoelectric Elements
Operating at the Fundamental Frequency 30-150 MHz and their Adjustment Method p. 405

Use of Active Networks to Widen the Spectrum of Application of Piezoelectric Filters p. 411

Monolithic Quartz Structure Vibrating Beam Accelerometer (VBA) p. 415

Temperature Compensated Sapphire Resonator for Ultra-Stable Oscillator Capability
at Temperatures Above 77 Kelvin p. 421

Low Noise Microwave Oscillators Based on High-Q Temperature Stabilized Sapphire
Resonators p. 433
Cryogenic Sapphire Resonator-Oscillator with Exceptional Stability: An Update p. 441
Sapphire Disk Dielectric Resonator Temperature Coefficient of Frequency Dependence on Temperature, Disk Configuration and Resonant Mode p. 447
Low Phase Noise Sapphire Disk Dielectric Resonator Oscillator with Combined Stabilization p. 451
High Tuning Coefficient Whispering Gallery Modes in a Sapphire Dielectric Resonator Transducer p. 459
Ceramic Dielectric Resonator Oscillator Aging p. 466
Development of a Low Noise L-Band Dielectric Resonator Oscillator p. 472
Supporting Structures Effects on High Q Dielectric Resonators for Oscillator Applications p. 478
Experimental Test and Application of a 2-D Finite Element Calculation for Whispering Gallery Sapphire Resonators p. 482
Stress Induced Frequency Shift of Dielectric Resonators with Magnetic Wall p. 486
2D Finite Element Program to Compute Resonant Frequencies and 3D Visualization of Electromagnetic Modes in Cylindrical Resonators p. 493
Sapphire Loaded Microwave Resonators with Enhanced Quality Factor p. 500
Fundamental Limits on the Frequency Instabilities of Quartz Crystal Oscillators p. 506
1/f Frequency Fluctuations and Nonlinearity of Quartz Resonators and Quartz Crystal Oscillators p. 524
1/f Noise in Surface Acoustic Wave (SAW) Resonators p. 530
Analysis of Quantum 1/f Effects in Frequency Standards p. 539
Irreversible Frequency Variations in Time of Precision Quartz Crystal Units p. 541
Study on Characterization of Frequency Stability in Time Domain p. 544
Design and Optimization of Low-Noise Oscillators Using Nonlinear CAD Tools p. 548
Nonlinear Oscillator Design for Maximum Power p. 555
Computer Aided Design of Quartz Crystal Oscillators p. 559
A New 5 and 10 MHz High Isolation Distribution Amplifier p. 567
A No-Drift and Less than 1 X 10^{-13} Long-Term Stability Quartz Oscillator Using a GPS SA Filter p. 572
Dual-Mode Crystal Oscillators with Resonators Excited on B and C Modes p. 578
Temperature Compensation of Crystal Oscillators Using Microcontroller - [mu]CTCXO p. 587
TCXO's Employing NS-GT Cut Quartz Crystal Resonators for Cellular Telephones p. 594
Operation of a Neural Network Controlled Crystal Oscillator p. 600
The Functions of the Precision Frequency Measurement Technique in MCXO p. 604
Application of LFE SC-Cut Resonators at High Stability Oscillators p. 608
Spectral Properties of DDFS: Computer Simulations and Experimental Verifications p. 613
Design and Analysis Methods of a DDS-Based Synthesizer for Military Spaceborne Applications p. 624
Frequency Control Requirements of Radar p. 633
Frequency Control Devices Applicable to Radar Systems p. 641
Design and Performance of an Ultra-Low Phase Noise, Radar Exciter p. 647
A Factor 1600 Increase in Neutral Atomic Beam Intensity Using Laser Cooling p. 651
Optical Lattices for Atomic Fountain Frequency Standards p. 655
Velocity Distributions of Atomic Beams by Gated Optical Pumping p. 658
A Hybrid Digital/Analog Servo for the NIST-7 Frequency Standard p. 662
High-Frequency Oscillators Using Phase-Locked Arrays of Josephson Junctions p. 666
Atomic Hydrogen Spin-Exchange Frequency Shift Cross Section at 0.5 Kelvin p. 670
Cryogenic Hydrogen Maser at 10 Kelvin p. 677
A Time Transfer Technique Using a Space-Borne Hydrogen Maser and Laser Pulse Timing p. 684

Radiation Resistant and Reproducible Fluorine-Based Coatings of H-Maser Storage Box for a Possible Use in Space p. 687
Frequency Control of Hydrogen Masers Using High Accuracy Calibrations p. 695
A Hydrogen Maser for Long-Term Operation in Space p. 709
Developments of Rubidium Frequency Standards at Neuchatel Observatory p. 716
The Double Bulb Rubidium Maser p. 724
Performance of a Prototype Microwave Frequency Standard Based on Trapped $^{171}\text{Yb}^{+}$ Ions p. 731
Recent Stability Comparisons with the JPL Linear Trapped Ion Frequency Standards p. 739
Progress on a Cryogenic Linear Trap for $^{199}\text{Hg}^{+}$ Ions p. 744
Space Flyable $^{199}\text{Hg}^{+}$ Frequency Standards p. 747
Progress Toward the Development of a Ytterbium Ion Standard p. 761
Second Harmonic Level Monitors in Cesium Atomic Frequency Standards p. 769
Glonass On-Board Time/Frequency Standard - Architecture and Operations p. 776
Effect of Space Vehicle Temperature on the Frequency of On-Orbit Navstar Clocks p. 782
Wavelet Analysis for Synchronization and Timekeeping p. 791
Accumulation of Random Noise in a Chain of Slave Clocks p. 798
Proceedings Ordering Information p. 812
Specifications and Standards Related to Frequency Control p. 813
Author Index p. 816

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.