<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forword</td>
<td>viii</td>
</tr>
<tr>
<td>Organizers</td>
<td>x</td>
</tr>
<tr>
<td>Reviewers</td>
<td>xiii</td>
</tr>
<tr>
<td>Component Based Systems</td>
<td></td>
</tr>
<tr>
<td>An Approach to Higher Reliability Using Software Components</td>
<td>2</td>
</tr>
<tr>
<td>A Bayesian Approach to Reliability Prediction and Assessment of Component Based Systems</td>
<td>12</td>
</tr>
<tr>
<td>Comparison of Architecture-Based Software Reliability Models</td>
<td>22</td>
</tr>
<tr>
<td>Testing GUI Software</td>
<td></td>
</tr>
<tr>
<td>Finite-State Testing and Analysis of Graphical User Interfaces</td>
<td>34</td>
</tr>
<tr>
<td>Incorporating Software Reliability Engineering into the Test Process for an Extensive GUI-Based Network Management System</td>
<td>44</td>
</tr>
<tr>
<td>User-Based Testing of GUI Sequences and Their Interactions</td>
<td>54</td>
</tr>
<tr>
<td>Software Fault Models and Prediction</td>
<td></td>
</tr>
<tr>
<td>An Application of Zero-Inflated Poisson Regression for Software Fault Prediction</td>
<td>66</td>
</tr>
<tr>
<td>A Fault Model for Fault Injection Analysis of Dynamic UML Dynamic Specifications</td>
<td>74</td>
</tr>
<tr>
<td>A Fault Model for Subtype Inheritance and Polymorphism</td>
<td>84</td>
</tr>
<tr>
<td>Reliable Wireless and Mobile Systems</td>
<td></td>
</tr>
<tr>
<td>Modeling and Analysis of Using Memory Management Unit to Improve Software Reliabilityp</td>
<td>96</td>
</tr>
<tr>
<td>Modeling and Verifying Strong Cache Consistency for Mobile Data Access</td>
<td>103</td>
</tr>
<tr>
<td>Recovery Proxy for Wireless Applications</td>
<td>112</td>
</tr>
<tr>
<td>Fault Tolerant Distributed Software Systems</td>
<td></td>
</tr>
<tr>
<td>Estimation of Software Diversity by Fault Simulation and Failure Searching</td>
<td>122</td>
</tr>
<tr>
<td>Fault Tolerant Distributed Information Systems</td>
<td>132</td>
</tr>
<tr>
<td>Increasing the Reliability of Three-Tier Applications</td>
<td>138</td>
</tr>
<tr>
<td>Low-Cost Flexible Software Fault Tolerance for Distributed Computing</td>
<td>148</td>
</tr>
<tr>
<td>Software Reliability Growth Modeling</td>
<td></td>
</tr>
<tr>
<td>A Simulation Based Trainer for Software Reliability Modeling</td>
<td>160</td>
</tr>
<tr>
<td>Analysis of Hypergeometric Distribution Software Reliability Model</td>
<td>166</td>
</tr>
<tr>
<td>Discrete Equations and Software Reliability Growth Models</td>
<td>176</td>
</tr>
<tr>
<td>Modelling the Fault Correction Process</td>
<td>185</td>
</tr>
<tr>
<td>Testing Internet and Multimedia Systems</td>
<td></td>
</tr>
<tr>
<td>An Auto-Generating Tool for the MPEG-2 Formatted Test Data: ATEP</td>
<td>192</td>
</tr>
<tr>
<td>Generating Test Cases for XML-Based Web Component Interactions Using Mutation Analysis</td>
<td>200</td>
</tr>
<tr>
<td>Toward Generic Timing Tests for Distributed Multimedia Software Systems</td>
<td>210</td>
</tr>
<tr>
<td>Formal Approaches</td>
<td></td>
</tr>
<tr>
<td>Efficient Deadlock Analysis of Clients/Server Systems with Two-Way Communication</td>
<td>222</td>
</tr>
<tr>
<td>Feedback Control of the Software Test Process Through Measurements of Software Reliability</td>
<td>232</td>
</tr>
<tr>
<td>Tool Support for Production Use of Formal Techniques</td>
<td>242</td>
</tr>
<tr>
<td>Software Testing Experiments</td>
<td></td>
</tr>
</tbody>
</table>