The Conformation of Biological Macromolecules
An Introduction to the Strategy and Tactics of Biophysical Chemistry
Structure of Proteins
Structure of Nucleic Acids
Other Biological Polymers
Conformational Analysis and Forces That Determine Protein Structure
Conformational Analysis and Forces That Determine Nucleic Acid Structure
Techniques for The Study of Biological Structure and Function
Absorption Spectroscopy
Other Optical Techniques
Introduction to Magnetic Resonance
Size and Shape of Macromolecules
Ultracentrifugation
Other Hydrodynamic Techniques
X-Ray Crystallography
Other Scattering and Diffraction Techniques
The Behavior of Biological Macromolecules
Ligand Interactions at Equilibrium
Kinetics of Ligand Interactions
Regulation of Biological Activity
Configurational Statistics of Polymer Chains
Elementary Polymer-Chain Hydrodynamics and Chain Dimensions
Conformational Equilibria of Polypeptides and Proteins: The Helix-Coil Transition

Conformational Equilibria of Polypeptides and Proteins: Reversible Folding of Proteins
Nucleic Acid Structural Transitions
Statistical Mechanics and Kinetics of Nucleic Acid Interactions
Tertiary Structure of Nucleic Acids
Introduction to Membrane Equilibria and to Bilayers
Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.